Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One use of the linear correlation coefficient is as a descriptive measure of the strength of the-------- relationshảp between two variables.

Short Answer

Expert verified

Linear

Step by step solution

01

Given Information 

To find the blank in the given statement.

02

Explanation

The degree and direction of a linear relationship between two variables are measured by the linear correlation coefficient.

As a result, the linear correlation coefficient can be used to describe the strength of a linear link between two variables.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For a data set consisting of two data points:

a. identify the regression line.

b. What is the sum of squared errors for the regression line? Explain your answer.

A positive linear relationship between two variables means that one variable tends to increase linearly as the other------

Sample Covariance. For a set of n data points, the sample covariance, sxy+is given by

The sample covariance can be used as an alternative method for tinding the slope and y-intercept of a regression line. The formulas are

b1=sv/xk2andb0=y^-b1i^n

where sidenotes the sample standard deviation of the x-values.

a. Use Equation (4.1) to determine the sample covariance of the data points in Exercise 4,45.

b. Use Equation (4.2) and your answer from part (a) to find the regression equation. Compare your result to that found in Exercise 4.57.

Answer true or false to each statement, and explain your answers.

a. The graph of a linear equation slopes upward unless the slope is 0 .

b. The value of the y-intercept has no effect on the direction that the graph of a linear equation slopes.

As we noted, because of the regression identity, we can express the coefficient of determination in terms of the total sum of squares and the error sum of squares as r2=1-SSE/SST

a. Explain why this formula shows that the coefficient of determination can also be interpreted as the percentage reduction obtained in the total squared error by using the regression equation instead of the mean. Y¯. to predict the observed values of the response variable.

b.

x
6
6
6
2
2
5
4
5
1
4
y
290
280
295
425
384
315
355
325
425
325

What percentage reduction is obtained in the total squared error by using the regression equation instead of the mean of the observed prices to predict the observed prices?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free