Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Quarters. In Exercises 9–12, refer to the accompanying table of weights (grams) of quarters minted by the U.S. government. This table is available for download at www.TriolaStats.com.

Day

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

\(\bar x\)

s

Range

1

5.543

5.698

5.605

5.653

5.668

5.6334

0.0607

0.155

2

5.585

5.692

5.771

5.718

5.72

5.6972

0.0689

0.186

3

5.752

5.636

5.66

5.68

5.565

5.6586

0.0679

0.187

4

5.697

5.613

5.575

5.615

5.646

5.6292

0.0455

0.122

5

5.63

5.77

5.713

5.649

5.65

5.6824

0.0581

0.14

6

5.807

5.647

5.756

5.677

5.761

5.7296

0.0657

0.16

7

5.686

5.691

5.715

5.748

5.688

5.7056

0.0264

0.062

8

5.681

5.699

5.767

5.736

5.752

5.727

0.0361

0.086

9

5.552

5.659

5.77

5.594

5.607

5.6364

0.0839

0.218

10

5.818

5.655

5.66

5.662

5.7

5.699

0.0689

0.163

11

5.693

5.692

5.625

5.75

5.757

5.7034

0.0535

0.132

12

5.637

5.628

5.646

5.667

5.603

5.6362

0.0235

0.064

13

5.634

5.778

5.638

5.689

5.702

5.6882

0.0586

0.144

14

5.664

5.655

5.727

5.637

5.667

5.67

0.0339

0.09

15

5.664

5.695

5.677

5.689

5.757

5.6964

0.0359

0.093

16

5.707

5.89

5.598

5.724

5.635

5.7108

0.1127

0.292

17

5.697

5.593

5.78

5.745

5.47

5.657

0.126

0.31

18

6.002

5.898

5.669

5.957

5.583

5.8218

0.185

0.419

19

6.017

5.613

5.596

5.534

5.795

5.711

0.1968

0.483

20

5.671

6.223

5.621

5.783

5.787

5.817

0.238

0.602

Quarters: Notation Find the values of \({\bf{\bar \bar x}}\)and\({\bf{\bar R}}\). Also find the values of LCL and UCL for an R chart, then find the values of LCL and UCL for an \({\bf{\bar x}}\) chart

Short Answer

Expert verified

The values are:

\(\begin{array}{l}\bar \bar x = 5.6955\;{\rm{g}}\\\bar R = 0.2054\;{\rm{g}}\end{array}\)

For\(\bar x\)-chart:

The upper control limt is 5.770 g.

The lower control limit is 5.8140 g.

For R-chart:

The upper control limt is 0.0000 g.

The lower control limit is 0.4342 g.

Step by step solution

01

Given information

The weights in grams are known for quarters minted by U.S. government.

Samples are taken each hour five times for 20 days.

Thus, each sequence of sample has size 5 (n) .

02

Step 2:Compute the average of mean measures and range for each day.

The averages for the sample mean and the range for the means are denoted as\(\bar \bar x,\;and\;\bar R\)respectively.

The mean of sample means:

\(\begin{array}{c}\bar \bar x = \frac{{\sum {\bar x} }}{{{\rm{Number}}\;{\rm{of}}\;{\rm{days}}}}\\ = \frac{{5.6334 + 5.6972 + ... + 5.8170}}{{20}}\\ = 5.6955\;g\end{array}\)

The mean of ranges:

\(\begin{array}{c}\bar R = \frac{{0.155 + 0.186 + ... + 0.602}}{{20}}\\ = 0.2054\end{array}\)

03

Compute lower and upper control limit for R-chart

The values of\({D_3}\;{\rm{and}}\;{D_4}\)are obtained from the control charts constants table for sample size 5.

The lower and upper control limits are obtained as follows:

\(\begin{array}{c}L.C.L = {D_3} \times \bar R\\ = 0 \times 0.2054\\ = 0.0000\;{\rm{g}}\end{array}\)

\(\begin{array}{c}U.C.L = {D_4} \times \bar R\\ = 2.114 \times 0.2054\\ = 0.4342\;{\rm{g}}\end{array}\)

The L.C.L. and U.C.L. for R-chart is 0.0000 g and 0.4342 g respectively.

04

Compute lower and upper control limit for \(\bar x\)-chart

The value of\({A_2}\)is 0.577 which is obtained from the control charts constants table for sample size 5.

The lower and upper control limits are obtained as follows:

\(\begin{array}{c}L.C.L = \bar \bar x - \left( {{A_2} \times \bar R} \right)\\ = 5.6955 - 0.577 \times 0.2054\\ = 5.5770\;{\rm{g}}\end{array}\)

\(\begin{array}{c}U.C.L = \bar \bar x + \left( {{A_2} \times \bar R} \right)\\ = 5.6955 + \left( {0.577 \times 0.2054} \right)\\ = 5.8140\;{\rm{g}}\end{array}\)

Thus, the L.C.L. and U.C.L. for the \(\bar x - {\rm{chart}}\) is 5.5770 g and 5.8140 g respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Control Charts for p. In Exercises 5–12, use the given process data to construct a control chart for p. In each case, use the three out-of-control criteria listed near the beginning of this section and determine whether the process is within statistical control. If it is not, identify which of the three out-of-control criteria apply

Car Batteries Defective car batteries are a nuisance because they can strand and inconvenience drivers, and drivers could be put in danger. A car battery is considered to be defective if it fails before its warranty expires. Defects are identified when the batteries are returned under the warranty program. The Powerco Battery corporation manufactures car batteries in batches of 250, and the numbers of defects are listed below for each of 12 consecutive batches. Does the manufacturing process require correction?

3 4 2 5 3 6 8 9 12 14 17 20

Energy Consumption. Exercises 1–5 refer to the amounts of energy consumed in the author’s home. (Most of the data are real, but some are fabricated.) Each value represents energy consumed (kWh) in a two-month period. Let each subgroup consist of the six amounts within the same year. Data are available for download atwww.TriolaStats.com.


Jan.-Feb.

Mar.-April

May-June

July-Aug.

Sept.-Oct.

Nov.-dec.

Year 1

3637

2888

2359

3704

3432

2446

Year 2

4463

2482

2762

2288

2423

2483

Year 3

3375

2661

2073

2579

2858

2296

Year 4

2812

2433

2266

3128

3286

2749

Year 5

3427

578

3792

3348

2937

2774

Year 6

4016

3458

3395

4249

4003

3118

Year 7

4016

3458

3395

4249

4003

3118

Year 8

4016

3458

3395

4249

4003

3118

Energy Consumption: R Chart Let each subgroup consist of the 6 values within a year. Construct an R chart and determine whether the process variation is within statistical control. If it is not, identify which of the three out-of-control criteria lead to rejection of statistically stable variation

Service Times The Newport Diner records the times (min) it takes before customers are asked for their order. Each day, 50 customers are randomly selected, and the order is considered to be defective if it takes longer than three minutes. The numbers of defective orders are listed below for consecutive days. Construct an appropriate control chart and determine whether the process is within statistical control. If not, identify which criteria lead to rejection of statistical stability.

3 2 3 5 4 6 7 9 8 10 11 9 12 15 17

Listed below are annual sunspot numbers paired with annual high values of the Dow Jones Industrial Average (DJIA). Sunspot numbers are measures of dark spots on the sun, and the DJIA is an index that measures the value of select stocks. The data are from recent and consecutive years. Use a 0.05 significance level to test for a linear correlation between values of the DJIA and sunspot numbers. Is the result surprising?

Sunspot

DJIA

45

10941

31

12464

46

14198

31

13279

50

10580

48

11625

56

12929

38

13589

65

16577

51

18054

Control Charts for p. In Exercises 5–12, use the given process data to construct a control chart for p. In each case, use the three out-of-control criteria listed near the beginning of this section and determine whether the process is within statistical control. If it is not, identify which of the three out-of-control criteria apply

Cola Cans In each of several consecutive days of production of cola cans, 50 cans are tested and the numbers of defects each day are listed below. Do the proportions of defects appear to be acceptable? What action should be taken?

8 7 9 8 10 6 5 7 9 12 9 6 8 7 9 8 11 10 9 7

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free