Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Lake Mead Elevations Many people in Nevada, Arizona, and California get water and electricity from Lake Mead and Hoover Dam. Shown in Exercise 4 are an x chart (top) and an R chart (bottom) obtained by using the monthly elevations (ft) of Lake Mead at Hoover Dam (based on data from the U.S. Department of the Interior). The control charts are based on the 12 monthly elevations for each of 75 consecutive and recent years. What does the x chart tell us about Lake Mead?

Short Answer

Expert verified

The chart indicates that the elevation of lake is decreasing since past few years and the mean elevation for the lake is not stable.

Step by step solution

01

Given information

Refer to exercise 4 for the \(\bar x\)-chart for the years (time) versus the sample mean of elevations for a Lake. The recordings are taken monthly for 75 consecutive years.

Thus, the sample size is 12 (n).

02

Step 2:Interpret the graph

Refer to the minitab output of the\(\bar x - {\rm{chart}}\),

The three lines show the three values: centerline (mean of sample means), UCL is the upper control limit, and LCL is the lower control limit. The blue markers represent the mean elevation recorded for each year.

Thus,

\(\begin{array}{c}\bar \bar x = 1164.1\;{\rm{ft}}\\UCL = 1169.8\;{\rm{ft}}\\LCL = 1158.5\;{\rm{ft}}\end{array}\)

03

Discuss the observations from the graph

Following observations are taken from the graph.

  1. The values exceed the upper control limit.
  2. There has beenlarge decrease in the last few years in the average elevations.

Thus, it can be concluded that the mean is not stable and the lake has constantly decreasing elevations since last few years.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Control Charts for p. In Exercises 5โ€“12, use the given process data to construct a control chart for p. In each case, use the three out-of-control criteria listed near the beginning of this section and determine whether the process is within statistical control. If it is not, identify which of the three out-of-control criteria apply

Car Batteries Defective car batteries are a nuisance because they can strand and inconvenience drivers, and drivers could be put in danger. A car battery is considered to be defective if it fails before its warranty expires. Defects are identified when the batteries are returned under the warranty program. The Powerco Battery corporation manufactures car batteries in batches of 250, and the numbers of defects are listed below for each of 12 consecutive batches. Does the manufacturing process require correction?

3 4 2 5 3 6 8 9 12 14 17 20

Notation The control chart for Exercise 1 shows a value of \(\bar p\) = 0.0975. What does that value denote, and how is it obtained? What do UCL and LCL indicate?

Quarters. In Exercises 9โ€“12, refer to the accompanying table of weights (grams) of quarters minted by the U.S. government. This table is available for download at www.TriolaStats.com.

Day

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

\(\bar x\)

s

Range

1

5.543

5.698

5.605

5.653

5.668

5.6334

0.0607

0.155

2

5.585

5.692

5.771

5.718

5.72

5.6972

0.0689

0.186

3

5.752

5.636

5.66

5.68

5.565

5.6586

0.0679

0.187

4

5.697

5.613

5.575

5.615

5.646

5.6292

0.0455

0.122

5

5.63

5.77

5.713

5.649

5.65

5.6824

0.0581

0.14

6

5.807

5.647

5.756

5.677

5.761

5.7296

0.0657

0.16

7

5.686

5.691

5.715

5.748

5.688

5.7056

0.0264

0.062

8

5.681

5.699

5.767

5.736

5.752

5.727

0.0361

0.086

9

5.552

5.659

5.77

5.594

5.607

5.6364

0.0839

0.218

10

5.818

5.655

5.66

5.662

5.7

5.699

0.0689

0.163

11

5.693

5.692

5.625

5.75

5.757

5.7034

0.0535

0.132

12

5.637

5.628

5.646

5.667

5.603

5.6362

0.0235

0.064

13

5.634

5.778

5.638

5.689

5.702

5.6882

0.0586

0.144

14

5.664

5.655

5.727

5.637

5.667

5.67

0.0339

0.09

15

5.664

5.695

5.677

5.689

5.757

5.6964

0.0359

0.093

16

5.707

5.89

5.598

5.724

5.635

5.7108

0.1127

0.292

17

5.697

5.593

5.78

5.745

5.47

5.657

0.126

0.31

18

6.002

5.898

5.669

5.957

5.583

5.8218

0.185

0.419

19

6.017

5.613

5.596

5.534

5.795

5.711

0.1968

0.483

20

5.671

6.223

5.621

5.783

5.787

5.817

0.238

0.602

Quarters: Run Chart Treat the 100 consecutive measurements from the 20 days as individual values and construct a run chart. What does the result suggest?

Child Restraint Systems Use the numbers of defective child restraint systems given in Exercise 8. Find the mean, median, and standard deviation. What important characteristic of the sample data is missed if we explore the data using those statistics?

Heights On the basis of Data Set 1 โ€œBody Dataโ€ in Appendix B, assume that heights of men are normally distributed, with a mean of 68.6 in. and a standard deviation of 2.8 in.

a. The U.S. Coast Guard requires that men must have a height between 60 in. and 80 in. Findthe percentage of men who satisfy that height requirement.

b. Find the probability that 4 randomly selected men have heights with a mean greater than 70 in.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free