Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Lake Mead Elevations Many people in Nevada, Arizona, and California get water and electricity from Lake Mead and Hoover Dam. Shown in Exercise 4 are an x chart (top) and an R chart (bottom) obtained by using the monthly elevations (ft) of Lake Mead at Hoover Dam (based on data from the U.S. Department of the Interior). The control charts are based on the 12 monthly elevations for each of 75 consecutive and recent years. What does the x chart tell us about Lake Mead?

Short Answer

Expert verified

The chart indicates that the elevation of lake is decreasing since past few years and the mean elevation for the lake is not stable.

Step by step solution

01

Given information

Refer to exercise 4 for the \(\bar x\)-chart for the years (time) versus the sample mean of elevations for a Lake. The recordings are taken monthly for 75 consecutive years.

Thus, the sample size is 12 (n).

02

Step 2:Interpret the graph

Refer to the minitab output of the\(\bar x - {\rm{chart}}\),

The three lines show the three values: centerline (mean of sample means), UCL is the upper control limit, and LCL is the lower control limit. The blue markers represent the mean elevation recorded for each year.

Thus,

\(\begin{array}{c}\bar \bar x = 1164.1\;{\rm{ft}}\\UCL = 1169.8\;{\rm{ft}}\\LCL = 1158.5\;{\rm{ft}}\end{array}\)

03

Discuss the observations from the graph

Following observations are taken from the graph.

  1. The values exceed the upper control limit.
  2. There has beenlarge decrease in the last few years in the average elevations.

Thus, it can be concluded that the mean is not stable and the lake has constantly decreasing elevations since last few years.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Energy Consumption. Exercises 1โ€“5 refer to the amounts of energy consumed in the authorโ€™s home. (Most of the data are real, but some are fabricated.) Each value represents energy consumed (kWh) in a two-month period. Let each subgroup consist of the six amounts within the same year. Data are available for download atwww.TriolaStats.com.


Jan.-Feb.

Mar.-April

May-June

July-Aug.

Sept.-Oct.

Nov.-dec.

Year 1

3637

2888

2359

3704

3432

2446

Year 2

4463

2482

2762

2288

2423

2483

Year 3

3375

2661

2073

2579

2858

2296

Year 4

2812

2433

2266

3128

3286

2749

Year 5

3427

578

3792

3348

2937

2774

Year 6

4016

3458

3395

4249

4003

3118

Year 7

4016

3458

3395

4249

4003

3118

Year 8

4016

3458

3395

4249

4003

3118

Energy Consumption: R Chart Let each subgroup consist of the 6 values within a year. Construct an R chart and determine whether the process variation is within statistical control. If it is not, identify which of the three out-of-control criteria lead to rejection of statistically stable variation

Control Charts for p. In Exercises 5โ€“12, use the given process data to construct a control chart for p. In each case, use the three out-of-control criteria listed near the beginning of this section and determine whether the process is within statistical control. If it is not, identify which of the three out-of-control criteria apply

Voting Rate In each of recent and consecutive years of presidential elections, 1000 people of voting age in the United States were randomly selected and the number who voted was determined, with the results listed below. Comment on the voting behavior of the population.

631 619 608 552 536 526 531 501 551 491 513 553 568

Quarters. In Exercises 9โ€“12, refer to the accompanying table of weights (grams) of quarters minted by the U.S. government. This table is available for download at www.TriolaStats.com.

Day

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

\(\bar x\)

s

Range

1

5.543

5.698

5.605

5.653

5.668

5.6334

0.0607

0.155

2

5.585

5.692

5.771

5.718

5.72

5.6972

0.0689

0.186

3

5.752

5.636

5.66

5.68

5.565

5.6586

0.0679

0.187

4

5.697

5.613

5.575

5.615

5.646

5.6292

0.0455

0.122

5

5.63

5.77

5.713

5.649

5.65

5.6824

0.0581

0.14

6

5.807

5.647

5.756

5.677

5.761

5.7296

0.0657

0.16

7

5.686

5.691

5.715

5.748

5.688

5.7056

0.0264

0.062

8

5.681

5.699

5.767

5.736

5.752

5.727

0.0361

0.086

9

5.552

5.659

5.77

5.594

5.607

5.6364

0.0839

0.218

10

5.818

5.655

5.66

5.662

5.7

5.699

0.0689

0.163

11

5.693

5.692

5.625

5.75

5.757

5.7034

0.0535

0.132

12

5.637

5.628

5.646

5.667

5.603

5.6362

0.0235

0.064

13

5.634

5.778

5.638

5.689

5.702

5.6882

0.0586

0.144

14

5.664

5.655

5.727

5.637

5.667

5.67

0.0339

0.09

15

5.664

5.695

5.677

5.689

5.757

5.6964

0.0359

0.093

16

5.707

5.89

5.598

5.724

5.635

5.7108

0.1127

0.292

17

5.697

5.593

5.78

5.745

5.47

5.657

0.126

0.31

18

6.002

5.898

5.669

5.957

5.583

5.8218

0.185

0.419

19

6.017

5.613

5.596

5.534

5.795

5.711

0.1968

0.483

20

5.671

6.223

5.621

5.783

5.787

5.817

0.238

0.602

Quarters: Run Chart Treat the 100 consecutive measurements from the 20 days as individual values and construct a run chart. What does the result suggest?

Heights On the basis of Data Set 1 โ€œBody Dataโ€ in Appendix B, assume that heights of men are normally distributed, with a mean of 68.6 in. and a standard deviation of 2.8 in.

a. The U.S. Coast Guard requires that men must have a height between 60 in. and 80 in. Findthe percentage of men who satisfy that height requirement.

b. Find the probability that 4 randomly selected men have heights with a mean greater than 70 in.

Sunspots and the DJIA Use the data from Exercise 5 and find the equation of the regression line. Then find the best predicted value of the DJIA in the year 2004, when the sunspot number was 61. How does the result compare to the actual DJIA value of 10,855?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free