Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sobriety Checkpoint When the author observed a sobriety checkpoint conducted by the Dutchess County Sheriff Department, he saw that 676 drivers were screened and 6 were arrested for driving while intoxicated. Based on those results, we can estimate that PI= 0.00888, where I denotes the event of screening a driver and getting someone who is intoxicated. What doesPI¯ denote, and what is its value?

Short Answer

Expert verified

PI¯represents screening a driver who is not intoxicated. Its value is equal to 0.99112.

Step by step solution

01

Given information

The probability of screening a driver who is intoxicated is denoted by PIand is equal to 0.00888.

02

Define complementary events

Let E be an event. Then, represents the event “not E.”

E¯is called thecomplementof E and vice-versa.

The below property is followed by two complementary events:

PE+PE¯=1

03

Define and compute the probability of a complementary event

Let I be the event of screening a driver who is intoxicated.

Therefore, I¯is the event of all outcomes that are not included in event I.

Thus, the probability of the complement of the event I is expressed as follows:

PI¯=1-PI=1-0.00888=0.991

Thus,PN¯ is equal to 0.991.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Composite Water Samples The Fairfield County Department of Public Health tests water for the presence of E. coli (Escherichia coli) bacteria. To reduce laboratory costs, water samples from 10 public swimming areas are combined for one test, and further testing is done only if the combined sample tests positive. Based on past results, there is a 0.005 probability of finding E. coli bacteria in a public swimming area. Find the probability that a combined sample from 10 public swimming areas will reveal the presence of E. coli bacteria. Is that probability low enough so that further testing of the individual samples is rarely necessary?

In Exercises 25–32, find the probability and answer the questions. YSORT Gender Selection MicroSort’s YSORT gender selection technique is designed to increase the likelihood that a baby will be a boy. At one point before clinical trials of the YSORT gender selection technique were discontinued, 291 births consisted of 239 baby boys and 52 baby girls (based on data from the Genetics & IVF Institute). Based on these results, what is the probability of a boy born to a couple using MicroSort’s YSORT method? Does it appear that the technique is effective in increasing the likelihood that a baby will be a boy?

At Least One. In Exercises 5–12, find the probability.

Wi-Fi Based on a poll conducted through the e-edition of USA Today, 67% of Internet users are more careful about personal information when using a public Wi-Fi hotspot. What is the probability that among four randomly selected Internet users, at least one is more careful about personal information when using a public Wi-Fi hotspot? How is the result affected by the additional information that the survey subjects volunteered to respond?

In Exercises 25–32, find the probability and answer the questions.

X-Linked Genetic Disease Men have XY (or YX) chromosomes and women have XX chromosomes. X-linked recessive genetic diseases (such as juvenile retinoschisis) occur when there is a defective X chromosome that occurs without a paired X chromosome that is not defective. In the following, represent a defective X chromosome with lowercase x, so a child with the xY or Yx pair of chromosomes will have the disease and a child with XX or XY or YX or xX or Xx will not have the disease. Each parent contributes one of the chromosomes to the child.

a. If a father has the defective x chromosome and the mother has good XX chromosomes, what is the probability that a son will inherit the disease?

b. If a father has the defective x chromosome and the mother has good XX chromosomes, what is the probability that a daughter will inherit the disease? c. If a mother has one defective x chromosome and one good X chromosome and the father has good XY chromosomes, what is the probability that a son will inherit the disease?

d. If a mother has one defective x chromosome and one good X chromosome and the father has good XY chromosomes, what is the probability that a daughter will inherit the disease?

In Exercises 17–20, refer to the accompanying table showing results from a Chembio test for hepatitis C among HIV-infected patients (based on data from a variety of sources).

Positive Test Result

Negative Test Result

Hepatitis C

335

10

No Hepatitis C

2

1153

False Negative Find the probability of selecting a subject with a negative test result, given that the subject has hepatitis C. What would be an unfavorable consequence of this error?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free