Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1–10, use the data in the accompanying table and express all results in decimal form. (The data are from “Mortality Reduction with Air Bag and Seat Belt Use in Head-On Passenger Car Collisions,” by Crandall, Olson, and Sklar, American Journal of Epidemiology, Vol. 153, No. 3.) Drivers Involved in Head-On Collision of Passenger Cars.

Drivers Involved in Head-On Collision of Passenger Cars


Driver Killed

Driver Not killed

Seatbelt Used

3655

7005

Seatbelt not Used

4402

3040

Both Drivers Killed If 2 drivers are randomly selected with replacement, find the probability that they both were killed.

Short Answer

Expert verified

The probability that two randomly selected drivers chosen with replacement are killed is 0.198.

Step by step solution

01

Given information

The drivers of passenger cars are categorized into four categories.

02

 Step 2: Define multiplication rule

The chances of joint occurrences of events are measured as the product of an event’s individual probability. Two types of scenarios are possible:

Independent events: Involve the selection of events with replacement

Dependent events: Involve the selection of events without replacement

Independent events have the same probabilities irrespective of the sequence of selection.

03

Step 3:Compute the additive total row-wise and column-wise

The totals are computed for each row and column.


Driver Killed

Driver Not killed

Total

Seatbelt Used

3655

7005

10660

Seatbelt not Used

4402

3040

7442

Total

8057

10045

18102

04

Compute the probability using the multiplication rule

Define the events as follows:

E: The randomly selected driver was killed

A: The two drivers randomly selected with replacement are killed

The number of drivers who were killed is 8057.

The total number of drivers surveyed is 18102.

Thus, the probability that any randomly selected driver was killed is:

PE=805718102

As the selection is made with replacement, the probability that the second driver was killed remains the same since the events are independent.

The probability that two drivers randomly selected with replacement are killed is:

PEandF=PE×PF=805718102×805718102=0.198

Thus, the probability that two drivers randomly selected with replacement are killed is 0.198.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At Least One. In Exercises 5–12, find the probability.

At Least One Correct Answer If you make random guesses for 10 multiple choice SAT test questions (each with five possible answers), what is the probability of getting at least 1 correct? If these questions are part of a practice test and an instructor says that you must get at least one correct answer before continuing, is there a good chance you will continue?

At Least One. In Exercises 5–12, find the probability.

At Least One Defective iPhone It has been reported that 20% of iPhones manufactured by Foxconn for a product launch did not meet Apple’s quality standards. An engineer needs at least one defective iPhone so she can try to identify the problem(s). If she randomly selects 15 iPhones from a very large batch, what is the probability that she will get at least 1 that is defective? Is that probability high enough so that she can be reasonably sure of getting a defect for her work?

In Exercises 17–20, refer to the accompanying table showing results from a Chembio test for hepatitis C among HIV-infected patients (based on data from a variety of sources).

Positive Test Result

Negative Test Result

Hepatitis C

335

10

No Hepatitis C

2

1153

False Positive Find the probability of selecting a subject with a positive test result, given that the subject does not have hepatitis C. Why is this case problematic for test subjects?

In Exercises 29 and 30, find the probabilities and indicate when the “5% guideline for cumbersome calculations” is used.

Medical Helicopters In a study of helicopter usage and patient survival, results were obtained from 47,637 patients transported by helicopter and 111,874 patients transported by ground (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults with Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15).

a. If 1 of the 159,511 patients in the study is randomly selected, what is the probability that the subject was transported by helicopter?

b. If 5 of the subjects in the study are randomly selected without replacement, what is the probability that all of them were transported by helicopter

In Exercises 25–32, find the probability and answer the questions. YSORT Gender Selection MicroSort’s YSORT gender selection technique is designed to increase the likelihood that a baby will be a boy. At one point before clinical trials of the YSORT gender selection technique were discontinued, 291 births consisted of 239 baby boys and 52 baby girls (based on data from the Genetics & IVF Institute). Based on these results, what is the probability of a boy born to a couple using MicroSort’s YSORT method? Does it appear that the technique is effective in increasing the likelihood that a baby will be a boy?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free