Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Thinking: Interpreting results from a test for smoking It is estimated that roughly half of smokers lie when asked about their smoking involvement. Pulse CO-oximeters may be a way to get information about smoking without relying on patients’ statements. Pulse CO-oximeters use light that shines through a fingernail, and it measures carbon monoxide in blood. These devices are used by firemen and emergency departments to detect carbon monoxide poisoning, but they can also be used to identify smokers. The accompanying table lists results from people aged 18–44 when the pulse CO-oximeter is set to detect a 6% or higher level of carboxyhemoglobin (based on data from “Carbon Monoxide Test Can Be Used to Identify Smoker,” by Patrice Wendling, Internal Medicine News, Vol. 40., No. 1, and Centers for Disease Control and Prevention).

CO-Oximetry Test for Smoking

Positive Test Result

Negative Test Result

Smoker

49

57

Non-smoker

24

370

Analyzing the Results

True Negative Based on the results in the table, find the probability that a subject does not smoke, given that the test result is negative.

Short Answer

Expert verified

The probability that a subject is a non-smoker, given that the test result is negative, is 0.867.

Step by step solution

01

Given information

The table given below summarizes the result for smoking.

CO-Oximetry test for smoking

Positive test result

Negative test result

Smoker

49

57

Non-smoker

24

370

02

State the formula of conditional probability

Conditional probability of event B occurring, given that event A has already occurred.

PBA=PAand BPA

03

Find the probabilities

Let event A denotes negative test results and event B denotes that a subject is a non- smoker.

Total number of subjects are 500.

Using the given information,

PA=Number of subjects whose test result is negativeTotal number of subjects=427500PA and B=Number of subjects who are not smoker and test result is negativeTotal number of subjects=370500

04

Calculate conditional probability 

The true negative is the probability that the subject does not smoke, given that the test result is negative.

It is computed as,

PBA=PSubject is non - smoker and test result is negativePTest result is negativePBA=PAand BPA...1

Substituting the values in equation (1),

PBA=370500427500=0.867

Therefore, the probability that a subject is a non-smoker, given that the test result is negative, is 0.867.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Acceptance Sampling. With one method of a procedure called acceptance sampling, a sample of items is randomly selected without replacement and the entire batch is accepted if every item in the sample is found to be okay. Exercises 27 and 28 involve acceptance sampling.

Something Fishy: The National Oceanic and Atmospheric Administration (NOAA) inspects seafood that is to be consumed. The inspection process involves selecting seafood samples from a larger “lot.” Assume a lot contains 2875 seafood containers and 288 of these containers include seafood that does not meet inspection requirements. What is the probability that 3 selected container samples all meet requirements and the entire lot is accepted based on this sample? Does this probability seem adequate?

In Exercises 21–24, refer to the sample data in Table 4-1, which is included with the Chapter Problem. Assume that 1 of the 555 subjects included in Table 4-1 is randomly selected.


Positive Test Result

(Test shows drug use)

Negative Test Result

(Test shows no drug use)

Subject Uses Drugs

45 (True Positive)

5 (False Negative)

Subject Does Not Use drugs

25 (False Positive)

480 (True Negative)

Drug Testing Job Applicants Find the probability of selecting someone who uses drugs. Does the result appear to be reasonable as an estimate of the “prevalence rate” described in the Chapter Problem?

Probability from a Sample Space. In Exercises 33–36, use the given sample space or construct the required sample space to find the indicated probability.

Three Children Use this sample space listing the eight simple events that are possible when a couple has three children (as in Example 2 on page 135): {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}. Assume that boys and girls are equally likely, so that the eight simple events are equally likely. Find the probability that when a couple has three children, there is exactly one girl.

Denomination Effect. In Exercises 13–16, use the data in the following table. In an experiment to study the effects of using a \(1 bill or a \)1 bill, college students were given either a \(1 bill or a \)1 bill and they could either keep the money or spend it on gum. The results are summarized in the table (based on data from “The Denomination Effect,” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36).

Purchased Gum

Kept the Money

Students Given A \(1 bill

27

46

Students Given a \)1 bill

12

34

Denomination Effect

a. Find the probability of randomly selecting a student who spent the money, given that the student was given a \(1 bill.

b. Find the probability of randomly selecting a student who kept the money, given that the student was given a \)1 bill.

c. What do the preceding results suggest?

At Least One. In Exercises 5–12, find the probability.

Phone Survey Subjects for the next presidential election poll are contacted using telephone numbers in which the last four digits are randomly selected (with replacement). Find the probability that for one such phone number, the last four digits include at least one 0

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free