Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–20, use the data in the following table, which lists drive-thru order accuracy at popular fast food chains (data from a QSR Drive-Thru Study). Assume that orders are randomly selected from those included in the table.

McDonald’s

Burger King

Wendy’s

Taco Bell

Order Accurate

329

264

249

145

Order Not Accurate

33

54

31

13

Fast Food Drive-Thru Accuracy If three different orders are selected, find the probability that they are all not accurate.

Short Answer

Expert verified

The probability that all three orders are inaccurate is equal to 0.00158.

Step by step solution

01

Given information

The given data shows the number of accurate and inaccurate food orders at drive-thru centers of four fast food chains.

02

Multiplication rule of probability

For three events A, B, and C to occur simultaneously, the following probability is calculated:

PAandBandC=PA×PB×PC

03

Calculation

The table below shows the subtotals for each category:

McDonald’s

Burger King

Wendy’s

Taco Bell

Totals

Order Accurate

329

264

249

145

987

Order Not

Accurate

33

54

31

13

131

Totals

362

318

280

158

Grand

Total=1118

The total number of food orders is equal to 1118.

Let E be the event of selecting an inaccurate food order on the first selection.

Let F be the event of selecting an inaccurate food order on the second selection.

Let G be the event of selecting an inaccurate food order on the third selection.

The number of inaccurate food orders is equal to 131.

The probability of selecting an inaccurate food order on the first selection is equal to:

PE=1311118

The remaining total number of orders and the number of inaccurate orders will decrease by 1.

The probability of selecting an inaccurate food order on the second selection is equal to:

PF=1301117

For the third selection, the remaining total number of orders and the number of inaccurate orders will further decrease by 1.

The probability of selecting an inaccurate food order on the third selection is equal to:

PG=1291116

The probability of selecting three inaccurate orders is given by:

PEandFandG=PE×PF×PG=1311118×1301117×1291116=0.00158

Therefore, the probability of selecting three inaccurate orders is equal to 0.00158.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9–20, use the data in the following table, which lists drive-thru order accuracy at popular fast food chains (data from a QSR Drive-Thru Study). Assume that orders are randomly selected from those included in the table.

McDonald’s

Burger King

Wendy’s

Taco Bell

Order Accurate

329

264

249

145

OrderNotAccurate

33

54

31

13

Fast Food Drive-Thru Accuracy If one order is selected, find the probability of getting an order from McDonald’s or Wendy’s or an order that is not accurate.

Denomination Effect. In Exercises 13–16, use the data in the following table. In an experiment to study the effects of using a \(1 bill or a \)1 bill, college students were given either a \(1 bill or a \)1 bill and they could either keep the money or spend it on gum. The results are summarized in the table (based on data from “The Denomination Effect,” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36).

Purchased Gum

Kept the Money

Students Given A \(1 bill

27

46

Students Given a \)1 bill

12

34

Denomination Effect

a. Find the probability of randomly selecting a student who spent the money, given that the student was given four quarters.

b. Find the probability of randomly selecting a student who spent the money, given that the student was given a $1 bill.

c. What do the preceding results suggest?

Denomination Effect. In Exercises 13–16, use the data in the following table. In an experiment to study the effects of using a \(1 bill or a \)1 bill, college students were given either a \(1 bill or a \)1 bill and they could either keep the money or spend it on gum. The results are summarized in the table (based on data from “The Denomination Effect,” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36).

Purchased Gum

Kept the Money

Students Given A \(1 bill

27

46

Students Given a \)1 bill

12

34

Denomination Effect

a. Find the probability of randomly selecting a student who spent the money, given that the student was given a \(1 bill.

b. Find the probability of randomly selecting a student who kept the money, given that the student was given a \)1 bill.

c. What do the preceding results suggest?

In Exercises 13–20, express the indicated degree of likelihood as a probability value between 0 and 1.

Sleepwalking Based on a report in Neurology magazine, 29.2% of survey respondents have sleepwalked.

Odds. In Exercises 41–44, answer the given questions that involve odds.

Relative Risk and Odds Ratio In a clinical trial of 2103 subjects treated with Nasonex, 26 reported headaches. In a control group of 1671 subjects given a placebo, 22 reported headaches. Denoting the proportion of headaches in the treatment group by ptand denoting the proportion of headaches in the control (placebo) group by role="math" localid="1644405830274" pc, the relative risk is ptpc. The relative risk is a measure of the strength of the effect of the Nasonex treatment. Another such measure is the odds ratio, which is the ratio of the odds in favor of a headache for the treatment group to the odds in favor of a headache for the control (placebo) group, found by evaluating the following:pt/1-ptpc/1-pc

The relative risk and odds ratios are commonly used in medicine and epidemiological studies. Find the relative risk and odds ratio for the headache data. What do the results suggest about the risk of a headache from the Nasonex treatment?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free