Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–12, find the indicated IQ score and round to the nearest whole number. The graphs depict IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler IQ test).

Short Answer

Expert verified

The IQ score (x) is 136.

Step by step solution

01

Given information

A shaded region is shown in the graph for the standard normal distribution of the IQ scores of adults.

The mean IQ score is 100.

The standard deviation of the IQ score is 15.

The area of the shaded region is 0.9918.

02

State the relationship between area and probability 

The left-tailed area is equal to the cumulative probabilities that are obtained by using the standard normal table (Table A-2) for z scores.

In the case of finding the right-tailed areas, the difference of these cumulative probabilities from 1 gives the required area toward the right of the z score.

03

Obtain the z score corresponding to x

Let X represent the IQ score of adults.

The variable X is normally distributed with the mean μ=100, and the standard deviation is σ=15.

The area to the left of the value x with the corresponding z score z is 0.9918.

Mathematically,

PX<x=PZ<z=0.9918

Using the standard normal table, the area of 0.9918 is observed corresponding to the row value 2.4 and the column value 0.00. This implies that the z score is 2.4.

Therefore,

PZ<2.4=0.9918

Thus, the z score corresponding to x is 2.4.

04

Obtain the value of x

The IQ score is computed as

x-μσ=2.4x-10015=2.4x=2.4×15+100=136

Therefore, the value of x is 136.

Thus, the IQ score that has the left-tailed area as 0.9918 is 136.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Greater than 0

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theatre seats, and classroom seats. (Hint: Draw a graph in each case.)

Mean

St.Dev.

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

Find the probability that a male has a back-to-knee length between 22.0 in. and 24.0 in.

Standard Normal DistributionIn Exercises 17–36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, draw a graph, then find the probability of the given bone density test scores. If using technology instead of Table A-2, round answers

to four decimal places.

Between -2.00 and 2.00.

In Exercises 11–14, use the population of {34, 36, 41, 51} of the amounts of caffeine (mg/12oz) in Coca-Cola Zero, Diet Pepsi, Dr Pepper, and Mellow Yello Zero.

Assume that  random samples of size n = 2 are selected with replacement.

Sampling Distribution of the Range Repeat Exercise 11 using ranges instead of means.

Outliers For the purposes of constructing modified boxplots as described in Section 3-3, outliers are defined as data values that are aboveQ3 by an amount greater than1.5×IQR or below Q1by an amount greater than1.5×IQR, where IQR is the interquartile range. Using this definition of outliers, find the probability that when a value is randomly selected from a normal distribution, it is an outlier.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free