Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The percentage of all possible observations of the variable that lie between 7 & 12 equals the area under its density curve between _ and _, expressed as a percentage.

Short Answer

Expert verified

Percentage of total observations that lie between 7 & 12 equals the area under density curve between x > 7 & x <10 expressed as a percentage

Step by step solution

01

Density Curve Concept 

Density Curve is a graphical representation of numerical distribution, having variable outcomes that are continuous (which can take non whole values), like weight = 45.3 Kgs

02

Density Curve Probability 

It shows likelihood ( probability) of continuous variable' outcomes. As total probability = 1, total area under the curve is also equal to 1.

Percentage of total observations that lie within a range is equal to percentage of area under the curve between the corresponding values.

03

Explanation

The percentage of all possible observations of the variable that lie between 7 & 12 equals the area under its density curve between x> 7 & x < 12

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard Normal DistributionIn Exercises 17โ€“36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, draw a graph, then find the probability of the given bone density test scores. If using technology instead of Table A-2, round answers

to four decimal places.

Greater than 0.18

Basis for the Range Rule of Thumb and the Empirical Rule. In Exercises 45โ€“48, find the indicated area under the curve of the standard normal distribution; then convert it to a percentage and fill in the blank. The results form the basis for the range rule of thumb and the empirical rule introduced in Section 3-2.

About______ % of the area is between z = -2 and z = 2 (or within 2 standard deviation of the mean).

College Presidents There are about 4200 college presidents in the United States, and they have annual incomes with a distribution that is skewed instead of being normal. Many different samples of 40 college presidents are randomly selected, and the mean annual income is computed for each sample. a. What is the approximate shape of the distribution of the sample means (uniform, normal, skewed, other)?

b. What value do the sample means target? That is, what is the mean of all such sample means?

In Exercises 7โ€“10, use the same population of {4, 5, 9} that was used in Examples 2 and 5. As in Examples 2 and 5, assume that samples of size n = 2 are randomly selected with replacement.

Sampling Distribution of the Sample Proportion

a. For the population, find the proportion of odd numbers.

b. Table 6-2 describes the sampling distribution of the sample mean. Construct a similar table representing the sampling distribution of the sample proportion of odd numbers. Then combine values of the sample proportion that are the same, as in Table 6-3. (Hint: See Example 2 on page 258 for Tables 6-2 and 6-3, which describe the sampling distribution of the sample mean.)

c. Find the mean of the sampling distribution of the sample proportion of odd numbers.

d. Based on the preceding results, is the sample proportion an unbiased estimator of the population proportion? Why or why not?

Basis for the Range Rule of Thumb and the Empirical Rule. In Exercises 45โ€“48, find the indicated area under the curve of the standard normal distribution; then convert it to a percentage and fill in the blank. The results form the basis for the range rule of thumb and the empirical rule introduced in Section 3-2.

About______ % of the area is between z = -3.5 and z = 3.5 (or within 3.5 standard deviation of the mean).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free