Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A curve has area 0.425to the left of 4and area 0.585to the right of 4. Could this curve be a density curve for some variable ? Explain your answer

Short Answer

Expert verified

No, the curve having area 0.425and 0.585area to right & left of point 4cannot be a density curve.

Step by step solution

01

Density Curve Concept 

Density Curve is a graphical representation of numerical distribution, having variable outcomes that are continuous (which can take non whole values), like weight = 54.3Kgs

02

Density Curve Probability 

It shows likelihood ( probability) of continuous variable' outcomes. As total probability = 1total area under the curve is also equal to1

Percentage of total observations that lie within a range is equal to percentage of area under the curve between the corresponding values.

03

Explanation  

As the area under the curve to the right and left of 4=0.585and ; so total area is = 0.585+0.425=1.01

Since total area under the curve = 1.01, which is not equal to 1. Hence, it can't be a density curve for a variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theater seats, and classroom seats. (Hint: Draw a graph in each case.)

Sitting Back-to-Knee Length (Inches)

Mean

St. Dev

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

Instead of using 0.05 for identifying significant values, use the criteria that a value x is significantly high if P(x or greater) ≤ 0.01 and a value is significantly low if P(x or less) ≤ 0.01. Find the back-to-knee lengths for males, separating significant values from those that are not significant. Using these criteria, is a male back-to-knee length of 26 in. significantly high?

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theatre seats, and classroom seats. (Hint: Draw a graph in each case.)

Mean

St.Dev.

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

For females, find the first quartile Q1, which is the length separating the bottom 25% from the top 75%.

Critical Values. In Exercises 41–44, find the indicated critical value. Round results to two decimal places.

z0.04

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Greater than 0

In Exercises 5–8, find the area of the shaded region. The graphs depict IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler IQ test).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free