Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bone Density Test. In Exercises 1–4, assume that scores on a bone mineral density test are normally distributed with a mean of 0 and a standard deviation of 1.

Bone Density For a randomly selected subject, find the probability of a score between 0.87 and 1.78.

Short Answer

Expert verified

The probability of a randomly selected subject having score between 0.87 and 1.78 is 0.1547.

Step by step solution

01

Given information

The bone mineral density test scores are normally distributed with mean value of 0 and standard deviation of 1.

02

Describe the random variable

Let Z be the random variable for bone mineral density test scores.

Z~Nμ,σ2~N0,12

03

Describe the required score

The probability has one-to-one correspondence with the area under the curve.

The probability of a score between 0.87 and 1.78 is expressed as,

P0.87<Z<1.78=Areabetween0.87and1.78=Areatotheleftof1.78-Areatotheleftof0.87=PZ<1.78-PZ<0.87...1

04

Obtain the z-score from the standard normal table

Using the standard normal table, the cumulative probability corresponding to intersection of row 1.7 and column 0.08 is 0.9625.

Using the standard normal table, the cumulative probability corresponding to intersection of row 0.8 and column 0.07 is 0.8078.

Thus,

PZ<1.78=0.9625PZ<0.87=0.8078

Substituting in equation (1),

P0.87<Z<1.78=0.9625-0.8078=0.1547

Therefore, the probability of any randomly selected subject having score between 0.87 and 1.78 is 0.1547.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 7–10, use the same population of {4, 5, 9} that was used in Examples 2 and 5. As in Examples 2 and 5, assume that samples of size n = 2 are randomly selected with replacement.

Sampling Distribution of the Sample Median

a. Find the value of the population median.

b. Table 6-2 describes the sampling distribution of the sample mean. Construct a similar table representing the sampling distribution of the sample median. Then combine values of the median that are the same, as in Table 6-3. (Hint: See Example 2 on page 258 for Tables 6-2 and 6-3, which describe the sampling distribution of the sample mean.)

c. Find the mean of the sampling distribution of the sample median. d. Based on the preceding results, is the sample median an unbiased estimator of the population median? Why or why not?

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theater seats, and classroom seats. (Hint: Draw a graph in each case.)

Mean

St.Dev.

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

Find the probability that a female has a back-to-knee length greater than 24.0 in.

In Exercises 9–12, find the area of the shaded region. The graph depicts the standard normal distribution of bone density scores with mean 0 and standard deviation 1.

Sampling with Replacement The Orangetown Medical Research Center randomly selects 100 births in the United States each day, and the proportion of boys is recorded for each sample.

a. Do you think the births are randomly selected with replacement or without replacement?

b. Give two reasons why statistical methods tend to be based on the assumption that sampling is conducted with replacement, instead of without replacement.

In Exercises 7–10, use the same population of {4, 5, 9} that was used in Examples 2 and 5. As in Examples 2 and 5, assume that samples of size n = 2 are randomly selected with replacement.

Sampling Distribution of the Sample Variance

a. Find the value of the population variance σ2.

b. Table 6-2 describes the sampling distribution of the sample mean. Construct a similar table representing the sampling distribution of the sample variance s2. Then combine values of s2that are the same, as in Table 6-3 (Hint: See Example 2 on page 258 for Tables 6-2 and 6-3, which describe the sampling distribution of the sample mean.)

c. Find the mean of the sampling distribution of the sample variance.

d. Based on the preceding results, is the sample variance an unbiased estimator of the population variance? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free