Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-3, use the following recent annual salaries (in millions of dollars) for players on the N.Y. Knicks professional basketball team.

23.4, 22.5, 11.5 ,7.1 ,6.0 ,4.1 ,3.3, 2.8, 2.6, 1.7, 1.6 ,1.3, 0.9 ,0.9, 0.6.

NY Knicks Salaries Round each of the salaries to the nearest million dollars, then construct a dotplot. Do the values appear to be from a population having a normal distribution?

Short Answer

Expert verified

The dot plot is shown below:

The sample observations do not seem to be part of a normally distributed population.

Step by step solution

01

Rounding the salaries to the nearest million dollars

The salaries are rounded to nearest million dollars as follows:

23, 23, 12, 7, 6, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1

02

Sketch a dot plot

Steps to construct a dot plot are:

1. Draw a line using real numbers .

2. Mark dots for each value on the line.

3. If the value repeats, mark the dot above the previous one.

The dot plot is shown below:

03

Determine normality

If the pattern described by a dot plot resembles an approximate bell shape, it implies the observations are taken from a normally distributed population. Otherwise, the distribution is non-normal. Thus, the dot plot shows that the distribution does not appear to follow a normal distribution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1.In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Between -4.27 and 2.34

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Less than 0

Curving Test Scores A professor gives a test and the scores are normally distributed with a mean of 60 and a standard deviation of 12. She plans to curve the scores.

a. If she curves by adding 15 to each grade, what is the new mean and standard deviation?

b. Is it fair to curve by adding 15 to each grade? Why or why not?

c. If the grades are curved so that grades of B are given to scores above the bottom 70% and below the top 10%, find the numerical limits for a grade of B.

d. Which method of curving the grades is fairer: adding 15 to each original score or using a scheme like the one given in part (c)? Explain.

Low Birth Weight The University of Maryland Medical Center considers “low birth weights” to be those that are less than 5.5 lb or 2495 g. Birth weights are normally distributed with a mean of 3152.0 g and a standard deviation of 693.4 g (based on Data Set 4 “Births” in Appendix B).

a. If a birth weight is randomly selected, what is the probability that it is a “low birth weight”?

b. Find the weights considered to be significantly low, using the criterion of a birth weight having a probability of 0.05 or less.

c. Compare the results from parts (a) and (b).

Distributions In a continuous uniform distribution,

μ=minimum+maximum2andσ=range12

a. Find the mean and standard deviation for the distribution of the waiting times represented in Figure 6-2, which accompanies Exercises 5–8.

b. For a continuous uniform distribution with μ=0andσ=1, the minimum is-3 and the maximum is 3. For this continuous uniform distribution, find the probability of randomly selecting a value between –1 and 1, and compare it to the value that would be obtained by incorrectly treating the distribution as a standard normal distribution. Does the distribution affect the results very much?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free