Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Standard Normal DistributionIn Exercises 17–36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, draw a graph, then find the probability of the given bone density test scores. If using technology instead of Table A-2, round answers

to four decimal places.

Greater than 0.25

Short Answer

Expert verified

The graph is represented as follows.

The probability that the bone density score is greater than 0.25 is 0.4013.

Step by step solution

01

Given information

The bone density test scores are normally distributed.

The mean score isμ=0.

The standard deviation isσ=1.

The z-score is provided as 0.25.

02

Draw a graph

Let x represent the bone density test score.

Asthe mean and standard deviation are0 and 1, respectively,x follows a standard normal distribution.

Steps to make a normal curve:

Step 1: Make a horizontal and a vertical axis.

Step 2: Mark the points -4, -2, 0, 2, and 4 on the horizontal axis and points 0.1, 0.2, 0.3, and 0.4 on the vertical axis.

Step 3: Provide titles to the horizontal and vertical axes as ‘z’ and ‘f(z)’, respectively.

Step 4: Shade the region right to z=0.25.

The shaded area represents the probability.

03

Step 3:Compute the probability

Using table A-2, the area to the left of 0.25 is obtained from the table in the intersection cell with the row value 0.2 and the column value 0.05, which is obtained as 0.5987.

The probability that the bone density score is greater than 0.25 is computed as follows.

Pz>0.25=1-Pz<0.25=1-0.5987=0.4013

Thus, the probability that the bone density score is greater than 0.25 is 0.4013.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard Normal Distribution. Find the indicated z score. The graph depicts the standard normal distribution of bone density scores with mean 0 and standard deviation 1.

Body Temperatures Based on the sample results in Data Set 3 “Body Temperatures” in Appendix B, assume that human body temperatures are normally distributed with a mean of 98.20°F and a standard deviation of 0.62°F.

a. According to emedicinehealth.com, a body temperature of 100.4°F or above is considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.4°F is appropriate?

b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 2.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.)

Curving Test Scores A professor gives a test and the scores are normally distributed with a mean of 60 and a standard deviation of 12. She plans to curve the scores.

a. If she curves by adding 15 to each grade, what is the new mean and standard deviation?

b. Is it fair to curve by adding 15 to each grade? Why or why not?

c. If the grades are curved so that grades of B are given to scores above the bottom 70% and below the top 10%, find the numerical limits for a grade of B.

d. Which method of curving the grades is fairer: adding 15 to each original score or using a scheme like the one given in part (c)? Explain.

Continuous Uniform Distribution. In Exercises 5–8, refer to the continuous uniform distribution depicted in Figure 6-2 and described in Example 1. Assume that a passenger is randomly selected, and find the probability that the waiting time is within the given range.

Between 2.5 minutes and 4.5 minutes

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theater seats, and classroom seats. (Hint: Draw a graph in each case.)

Mean

St.Dev.

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

Find the probability that a female has a back-to-knee length greater than 24.0 in.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free