Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mean Absolute DeviationIs the mean absolute deviation of a sample a good statistic for estimating the mean absolute deviation of the population? Why or why not?

Short Answer

Expert verified

No, the mean absolute deviation of a sample is not a good statistic for estimating the mean absolute deviation of the population because it is a biased estimator.

Step by step solution

01

Given information

The sample mean absolute deviation is considered a good statistic for estimating the population’s mean absolute deviation.

02

Good statistic

A good statistic for estimating a population parameter is the one that is an unbiased estimator of the population parameter.

That is, if the mean of all the values of the sample statistic (for a large number of samples) is equal to the population parameter, it is considered a good statistic.

The mean absolute deviation of a sample is a biased estimator of the mean absolute deviation of the population.

Therefore mean absolute deviation of a sample is not a good statistic for the estimation of the mean absolution deviation of the population.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Basis for the Range Rule of Thumb and the Empirical Rule. In Exercises 45–48, find the indicated area under the curve of the standard normal distribution; then convert it to a percentage and fill in the blank. The results form the basis for the range rule of thumb and the empirical rule introduced in Section 3-2.

About______ % of the area is between z = -1 and z = 1 (or within 1 standard deviation of the mean).

Standard normal distribution. In Exercise 17-36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1.In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Less than -1.23

In Exercises 13–20, use the data in the table below for sitting adult males and females (based on anthropometric survey data from Gordon, Churchill, et al.). These data are used often in the design of different seats, including aircraft seats, train seats, theater seats, and classroom seats. (Hint: Draw a graph in each case.)

Mean

St.Dev.

Distribution

Males

23.5 in

1.1 in

Normal

Females

22.7 in

1.0 in

Normal

Find the probability that a female has a back-to-knee length between 22.0 in. and 24.0 in.

Standard Normal DistributionIn Exercises 17–36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, draw a graph, then find the probability of the given bone density test scores. If using technology instead of Table A-2, round answers

to four decimal places.

Greater than -2.00.

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Less than 0

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free