Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Standard normal distribution. In Exercise 17-36, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1.In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Less than -1.23

Short Answer

Expert verified

The graph for the bone density lesser than -1.23 is as follows.

The probability of the bone density test score less than -1.23 is 0.1093.

Step by step solution

01

Given information

The bone density test scores are normally distributed with a mean of 0 and a standard deviation of 1.

02

Describe the distribution

As the distribution of bone density follows the standard normal distribution, the random variable for bone density is expressed as Z.

Thus,

Z~Nμ,σ2~N0,12

03

Draw a graph

Steps to sketch a normal curve:

  1. Make a horizontal and a vertical axis.
  2. Mark the points -3.0, -2.5, -2.0 up to 3 on the horizontal axis and points 0, 0.05, 0.10 up to 0.50 on the vertical axis.
  3. Provide titles to the horizontal and vertical axes as z and P(z), respectively.
  4. Shade the region lesser than -1.23.

The shaded area of the graph indicates the probability that the z-score is lesser than -1.23. Due to the one-to-one correspondence of the area and probability in the standard normal curve, the cumulative probability of -1.23 is the same as the area to the left of 1.23.

04

Step 4:Find the cumulative area corresponding to the z-score

Referring to the standard normal table, the cumulative probability of -1.23 is obtained from the cell intersection for rows -1.2 and the column value 0.03, which is 0.1093.

The probability that the bone density is lesser than -1.23 is computed as follows.

Area to the left of-1.23=Pz<-1.23=0.1093

Thus, the probability of the bone density test score being less than -1.23 is 0.1093.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard normal distribution, assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, Draw a graph, then find the probability of the given bone density test score. If using technology instead of Table A-2, round answers to four decimal places.

Greater than -3.75

Continuous Uniform Distribution. In Exercises 5–8, refer to the continuous uniform distribution depicted in Figure 6-2 and described in Example 1. Assume that a passenger is randomly selected, and find the probability that the waiting time is within the given range.

Between 2.5 minutes and 4.5 minutes

Durations of PregnanciesThe lengths of pregnancies are normally distributed with a mean of 268 days and a standard deviation of 15 days.

a. In a letter to “Dear Abby,” a wife claimed to have given birth 308 days after a brief visit fromher husband, who was working in another country. Find the probability of a pregnancy lasting308 days or longer. What does the result suggest?

b. If we stipulate that a baby is prematureif the duration of pregnancy is in the lowest 3%,find the duration that separates premature babies from those who are not premature. Premature babies often require special care, and this result could be helpful to hospital administrators in planning for that care.

Quarters After 1964, quarters were manufactured so that their weights have a mean of5.67 g and a standard deviation of 0.06 g. Some vending machines are designed so that you canadjust the weights of quarters that are accepted. If many counterfeit coins are found, you cannarrow the range of acceptable weights with the effect that most counterfeit coins are rejectedalong with some legitimate quarters.

a. If you adjust your vending machines to accept weights between 5.60 g and 5.74 g, what percentage of legal quarters are rejected? Is that percentage too high?

b. If you adjust vending machines to accept all legal quarters except those with weights in the top 2.5% and the bottom 2.5%, what are the limits of the weights that are accepted?

College Presidents There are about 4200 college presidents in the United States, and they have annual incomes with a distribution that is skewed instead of being normal. Many different samples of 40 college presidents are randomly selected, and the mean annual income is computed for each sample. a. What is the approximate shape of the distribution of the sample means (uniform, normal, skewed, other)?

b. What value do the sample means target? That is, what is the mean of all such sample means?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free