Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sign Test for Freshman 15 The table below lists some of the weights (kg) from Data Set 6 “Freshman 15” in Appendix B. Those weights were measured from college students in September and later in April of their freshman year. Assume that we plan to use the sign test to test the claim of no difference between September weights and April weights. What requirements must be satisfied for this test? Is there any requirement that the populations must have a normal distribution or any other specific distribution? In what sense is this sign test a “distribution-free test”?

September weight (kg)

67

53

64

74

67

70

55

74

62

57

April weight (kg)

66

52

68

77

67

71

60

82

65

58

Short Answer

Expert verified
  • The only requirement for conducting a sign test is that the two samples should be simple random samples.
  • No, there is no requirement for the populations of the given samples to follow a certain distribution, such as normal distribution or any other distribution.
  • As there is no strict requirement for the populations to follow a certain distribution, the sign test can be regarded as the ‘distribution-free test’.

Step by step solution

01

Given information

Two samples are given showing the weights of students (kgs) in September and April.

02

State the assumptions of the sign test

The sign test is a type of non-parametric test that can be used to test the claim of no difference in the values of the two samples.

The following are the only requirements for conducting a sign test.

1. The sample data should be a simple random sample.

2. There is no requirement for the populations of the samples to follow a specific distribution, such as normal distribution or any other distribution.

3. As there is no assumption regarding the distribution of the populations, the sign test can be regarded as a ‘distribution-free test’.

The stated results are satisfied by the three assumptions of the sign test.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–3, use the data listed below. The values are departure delay times (minutes) for American Airlines flights from New York to Los Angeles. Negative values correspond to flights that departed early.

Flight 1(min)

-2

-1

-2

2

-2

0

-2

-3

Flight 19 (min)

19

-4

-5

-1

-4

73

0

1

Flight 21(min)

18

60

142

-1

-11

-1

47

13

Flight Departure Delays Compare the three samples using means, medians, and standard deviations.

Notation What do r, \({r_s}\) , \(\rho \), and \({\rho _s}\) denote? Why is the subscript s used? Does the subscript s represent the same standard deviation s introduced in Section 3-2?

Using Nonparametric Tests. In Exercises 1–10, use a 0.05 significance level with the indicated test. If no particular test is specified, use the appropriate nonparametric test from this chapter.

Airline Fares Refer to the same data from the preceding exercise. Use the Wilcoxon signed ranks test to test the claim that differences between fares for flights scheduled 1 day in advance and those scheduled 30 days in advance have a median equal to 0. What do the results suggest?

Drug Tests Use the data from the preceding exercise and test the claim that the rate of positive drug test results among workers in the United States is greater than 3.0%. Use a 0.05 significance level.

Using Nonparametric Tests. In Exercises 1–10, use a 0.05 significance level with the indicated test. If no particular test is specified, use the appropriate nonparametric test from this chapter.

Presidents, Popes, Monarchs Listed below are numbers of years that U.S. presidents, popes, and British monarchs lived after their inauguration, election, or coronation, respectively. Assume that the data are samples randomly selected from larger populations. Test the claim that the three samples are from populations with the same median.

Presidents

10

29

26

28

15

23

17

25

0

20

4

1

24

16

12


4

10

17

16

0

7

24

12

4

18

21

11

2

9

36


12

28

3

16

9

25

23

32








Popes

2

9

21

3

6

10

18

11

6

25

23

6

2

15

32


25

11

8

17

19

5

15

0

26







Monarchs

17

6

13

12

13

33

59

10

7

63

9

25

36

15


See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free