Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)

Color and Cognition Researchers from the University of British Columbia conducted a study to investigate the effects of color on cognitive tasks. Words were displayed on a computer screen with background colors of red and blue. Results from scores on a test of word recall are given below. Higher scores correspond to greater word recall.

a. Use a 0.05 significance level to test the claim that the samples are from populations with the same mean.

b. Construct a confidence interval appropriate for the hypothesis test in part (a). What is it about the confidence interval that causes us to reach the same conclusion from part (a)?

c. Does the background color appear to have an effect on word recall scores? If so, which color appears to be associated with higher word memory recall scores?

Red Background n = 35, x = 15.89, s = 5.90

Blue Background n = 36, x = 12.31, s = 5.48

Short Answer

Expert verified

a. There is a significant difference between the means of the two populations at the level of significance .

b. The 95% confidence interval for this hypothesis test is (0.832,6.33). Thus, the result is similar to part (a).

c. The fact that background color has some effect on word recall scores implies that the samples are from populations with different means. Red is associated with higher word memory recall scores.

Step by step solution

01

Given information

The level of significance and the sample statistics for the test results on samples with red and blue backgrounds are given below.

Level of significance:\(\alpha = 0.05\)

\(\begin{array}{l}{{\rm{1}}^{{\rm{st}}}}\;{\rm{sample}}\;{\rm{:Red Background}}\\{n_1}\; = 35,\\{s_1} = 0.5.90\;\\{{\bar x}_1} = 15.89\end{array}\)

\(\begin{array}{l}{{\rm{2}}^{{\rm{nd}}}}\;{\rm{sample}}\;{\rm{:Blue Background}}\\{n_2} = 36\\{s_2} = 5.48\;\\{{\bar x}_2} = 12.31\end{array}\)

02

State the hypothesis

a.

The claim states equality between the means of two independent samples.

\(\begin{array}{l}{H_{0\;}}:{\mu _1} = {\mu _2}\\{H_1}\;:\;{\mu _1} \ne \;{\mu _2}\end{array}\)

Here,\({\mu _1},{\mu _2}\) are the population means of cognitive scores for red and blue backgrounds, respectively.

03

State the test statistic

It is an example of two independent sample t-test concerning means.

The formula for test statistics is given below.

\(t = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }}\)

04

Find the critical values

For t-distribution, find the degrees of freedom as follows:

\(\begin{array}{c}df = \min \left( {\left( {{n_1} - 1} \right),\left( {{n_2} - 1} \right)} \right)\\ = \min \left( {\left( {35 - 1} \right),\left( {36 - 1} \right)} \right)\\ = 34\end{array}\)

The critical values are obtained as follows:

\(\begin{array}{c}P\left( {t > {t_{\frac{\alpha }{2}}}} \right) = \frac{\alpha }{2}\\P\left( {t > {t_{\frac{{0.05}}{2}}}} \right) = \frac{{0.05}}{2}\\P\left( {t > {t_{0.025}}} \right) = 0.025\end{array}\)

Thus, the critical value obtained from the t-table for 34 degrees of freedom is 2.0322.

05

Compute the test statistic

The test statistic of the means of populations is as follows:

\(\begin{array}{c}t = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }}\\ = \frac{{\left( {15.89 - 12.31} \right)}}{{\sqrt {\frac{{{{\left( {5.90} \right)}^2}}}{{35}} + \frac{{{{\left( {5.48} \right)}^2}}}{{36}}} }}\\ = 2.647\end{array}\)

The test statistic is \(t = 2.647\).

06

Decision rule using the critical value

The decision criterion for this problem statement is given below.

If\(\left| {{t_{stat}}} \right|\; > \;{t_{crit}}\); Reject a null hypothesis at\(\alpha \)level of significance

If\(\left| {{t_{stat}}} \right|\; < {t_{crit}}\); Fail to accept the null hypothesis at\(\alpha \)level of significance

In this case, \(\left| {{t_{stat}} = 2.647} \right|\; > \;{t_{crit}} = 2.032\). Thus, the null hypothesis is rejected.

It can be concluded that there is insufficient evidence to support the claim, and hence the two backgrounds have different mean scores.

07

Step 7:Confidence interval for the difference of means of population

b.

The 0.05 significance level for the two-tailed test implies a confidence level of 95%.

The formula for the confidence interval of the means of population is given by

\(\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - E < \left( {{\mu _1} - {\mu _2}} \right) < \left( {{{\bar x}_1} - {{\bar x}_2}} \right) + E\)

E is the margin of error, and the formula for the margin of error is as follows:

\(\begin{array}{c}E = {t_{\frac{\alpha }{2}}} \times \sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} \\ = {t_{\frac{{0.05}}{2}}} \times \sqrt {\frac{{{{5.90}^2}}}{{35}} + \frac{{{{5.48}^2}}}{{36}}} \\ = 2.0322 \times 1.3523\\ = 2.748\end{array}\)

Substitute the values in the formula to find the confidence interval as follows:

\(\begin{array}{c}{\rm{C}}{\rm{.I}} = \left( {{{\bar x}_1} - {{\bar x}_2}} \right) - E < \left( {{\mu _1} - {\mu _2}} \right) < \left( {{{\bar x}_1} - {{\bar x}_2}} \right) + E\\ = \left( {15.89 - 12.31} \right) - 2.748 < \left( {{\mu _1} - {\mu _2}} \right) < \left( {15.89 - 12.31} \right) + 2.748\\ = 0.832 < \left( {{\mu _1} - {\mu _2}} \right) < 6.33\end{array}\)

Thus, the 95% confidence interval appropriate for the hypothesis test lies between 0.832 and 6.33.

The interval does not include a zero, which implies the null hypothesis is rejected (same as part (a)).

08

Analyze the results

c.

From the results of the two parts, there is sufficient evidence to warrant the claim that there is a difference in cognitive scores when two different backgrounds are used.

As the interval shows positive values, it is evident that the red background has better scores than the blue background. Thus, the red color is associated with higher word memory recall scores.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Car and Taxi Ages When the author visited Dublin, Ireland (home of Guinness Brewery employee William Gosset, who first developed the t distribution), he recorded the ages of randomly selected passenger cars and randomly selected taxis. The ages can be found from the license plates. (There is no end to the fun of traveling with the author.) The ages (in years) are listed below. We might expect that taxis would be newer, so test the claim that the mean age of cars is greater than the mean age of taxis.

Car

Ages

4

0

8

11

14

3

4

4

3

5

8

3

3

7

4

6

6

1

8

2

15

11

4

1

1

8

Taxi Ages

8

8

0

3

8

4

3

3

6

11

7

7

6

9

5

10

8

4

3

4

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Is Echinacea Effective for Colds? Rhinoviruses typically cause common colds. In a test of the effectiveness of Echinacea, 40 of the 45 subjects treated with Echinacea developed rhinovirus infections. In a placebo group, 88 of the 103 subjects developed rhinovirus infections (based on data from “An Evaluation of Echinacea Angustifolia in Experimental Rhinovirus Infections,” by Turner et al., New England Journal of Medicine, Vol. 353, No. 4). We want to use a 0.05 significance level to test the claim that Echinacea has an effect on rhinovirus infections.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does Echinacea appear to have any effect on the infection rate?

Are Flights Cheaper When Scheduled Earlier? Listed below are the costs (in dollars) of flights from New York (JFK) to Los Angeles (LAX). Use a 0.01 significance level to test the claim that flights scheduled one day in advance cost more than flights scheduled 30 days in advance. What strategy appears to be effective in saving money when flying?

Delta

Jet Blue

American

Virgin

Alaska

United

1 day in advance

501

634

633

646

633

642

30 days in advance

148

149

156

156

252

313

We have specified a margin of error, a confidence level, and a likely range for the observed value of the sample proportion. For each exercise, obtain a sample size that will ensure a margin of error of at most the one specified (provided of course that the observed value of the sample proportion is further from 0.5than the educated guess).Obtain a sample size that will ensure a margin of error of at most the one specified.

marginoferror=0.04;confidencelevel=99%;likelyrange=0.7orless

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cell Phones and Handedness A study was conducted to investigate the association between cell phone use and hemispheric brain dominance. Among 216 subjects who prefer to use their left ear for cell phones, 166 were right-handed. Among 452 subjects who prefer to use their right ear for cell phones, 436 were right-handed (based on data from “Hemi- spheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery, Vol. 139, No. 5). We want to use a 0.01 significance level to test the claim that the rate of right-handedness for those who prefer to use their left ear for cell phones is less than the rate of right-handedness for those who prefer to use their right ear for cell phones. (Try not to get too confused here.)

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free