Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Accuracy of Fast Food Drive-Through Orders In a study of Burger King drive-through orders, it was found that 264 orders were accurate and 54 were not accurate. For McDonald’s, 329 orders were found to be accurate while 33 orders were not accurate (based on data from QSR magazine). Use a 0.05 significance level to test the claim that Burger King and McDonald’s have the same accuracy rates.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Relative to accuracy of orders, does either restaurant chain appear to be better?

Short Answer

Expert verified

a. There is sufficient evidence to reject the claim thatBurger King and McDonald’s have the same accuracy rates.

b. The 95% confidence interval obtained is (-0.129, -0.028), and it suggests that there is sufficient evidence to reject the claim thatBurger King and McDonald’s have the same accuracy rates.

c. McDonald’shas a better accuracy rate compared to Burger King.

Step by step solution

01

Given information

In testing the accuracy of drive-through orders, for Burger King, 264 orders were accurate, and 54 were not accurate, while for McDonald’s, 329 orders were accurate and 33 were not accurate.

The level of significance to test the hypothesis is 0.05.

02

Describe the hypotheses to be tested

Null hypothesis:Burger King and McDonald’s have the same accuracy rates.

H0:p1=p2

Alternate Hypothesis:Burger King and McDonald’s do not have the same accuracy rates.

H1:p1p2

03

Calculate the sample statistics

The sample size n1 is computed below:

n1=264+54=318

The sample size n2 is computed below:

n2=329+33=362

Assume thatx1 and x2 are the number of accurate orders for Burger King and McDonald’s respectively.

Letp^1 be the sample accuracy rate of Burger King.

Thus,

p^1=x1n1=264318=0.83

q^1=1-p^1=0.17

Let p^2 be the sample accuracy rate of McDonald’s.

Thus,

p^2=x2n2=329362=0.91

q^2=1-p^2=0.09

The value of the pooled sample proportion is equal to:

p¯=x1+x2n1+n2=264+329318+362=0.872

Hence,

q¯=1-p¯=1-0.872=0.128

04

Compute the value of test statistic

The test statistic is equal to:

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.83-0.91-00.8720.128318+0.8720.128362=-3.064

Thus, z=-3.064.

Referring to the standard normal distribution table, the critical values of z corresponding to α=0.05for a two-tailed test are equal to -1.96 and 1.96.

Referring to the standard normal distribution table, the corresponding p-value is equal to 0.0022.

Here, the value of the test statistic does not lie between the two critical values.

Therefore, reject the null hypothesis under 0.05 significance level.

05

Conclusion of the test

a.

There is sufficient evidence to reject the claim thatBurger King and McDonald’s have the same accuracy rates.

06

Describe the confidence interval

If the level of significance for a two-tailed test is equal to 0.05, then the corresponding confidence level to construct the confidence interval is equal to 95%.

The confidence interval estimate has the following formula:

p^1-p^2-E<p1-p2<p^1-p^2+E

Here, E is the margin of error.

07

Calculate the margin of error

E is the margin of error and has the following formula:

E=zα2p^1q^1n1+p^2q^2n2=1.96×0.830.17318+0.910.09362=0.051

08

Construct the confidence interval

b.

Substituting the required values, the following confidence interval is obtained:

p^1-p^2-E<p1-p2<p^1-p^2+E(0.83-0.91)-0.051<p1-p2<(0.83-0.91)+0.051-0.129<p1-p2<-0.028

Thus, the 95% confidence interval is equal to (-0.129, -0.028).

This confidence interval does not contain zero that means there is a significant difference between the two proportions of accurate orders.

Therefore, the confidence interval suggests that there is sufficient evidence to reject the claim thatBurger King and McDonald’s have the same accuracy rates.

09

Compare the accuracy rates.

c.

There is a significant difference between the proportions of accurate orders of Burger King and McDonald’s, and the confidence interval contains only negative values.

Therefore, the accuracy rate of Burger King is less than that of McDonald’s, and McDonald’s can be considered better.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)Blanking Out on Tests Many students have had the unpleasant experience of panicking on a test because the first question was exceptionally difficult. The arrangement of test items was studied for its effect on anxiety. The following scores are measures of “debilitating test anxiety,” which most of us call panic or blanking out (based on data from “Item Arrangement, Cognitive Entry Characteristics, Sex and Test Anxiety as Predictors of Achievement in Examination Performance,” by Klimko, Journal of Experimental Education, Vol. 52, No. 4.) Is there sufficient evidence to support the claim that the two populations of scores have different means? Is there sufficient evidence to support the claim that the arrangement of the test items has an effect on the score? Is the conclusion affected by whether the significance level is 0.05 or 0.01?

Questions Arranged from Easy to Difficult

24.64

39.29

16.32

32.83

28.02

33.31

20.60

21.13

26.69

28.9

26.43

24.23

7.10

32.86

21.06

28.89

28.71

31.73

30.02

21.96

25.49

38.81

27.85

30.29

30.72

Questions Arranged from Difficult to Easy

33.62

34.02

26.63

30.26

35.91

26.68

29.49

35.32

27.24

32.34

29.34

33.53

27.62

42.91

30.20

32.54

Braking Reaction Times: Boxplots Use the same data from Exercise 6 and use the same scale to construct a boxplot of the braking reaction times of males and another boxplot for the braking reaction times of females. What do the boxplots suggest?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

IQ and Lead Exposure Data Set 7 “IQ and Lead” in Appendix B lists full IQ scores for a random sample of subjects with low lead levels in their blood and another random sample of subjects with high lead levels in their blood. The statistics are summarized below.

a. Use a 0.05 significance level to test the claim that the mean IQ score of people with low blood lead levels is higher than the mean IQ score of people with high blood lead levels.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Does exposure to lead appear to have an effect on IQ scores?

Low Blood Lead Level: n = 78, \(\bar x\) = 92.88462, s = 15.34451

High Blood Lead Level: n = 21,\(\bar x\)= 86.90476, s = 8.988352

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Bednets to Reduce Malaria In a randomized controlled trial in Kenya, insecticide-treated bednets were tested as a way to reduce malaria. Among 343 infants using bednets, 15 developed malaria. Among 294 infants not using bednets, 27 developed malaria (based on data from “Sustainability of Reductions in Malaria Transmission and Infant Mortality in Western Kenya with Use of Insecticide-Treated Bednets,” by Lindblade et al., Journal of the American Medical Association, Vol. 291, No. 21). We want to use a 0.01 significance level to test the claim that the incidence of malaria is lower for infants using bednets.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, do the bednets appear to be effective?

Find and interpret 95 % confidence interval for the proportion of all US adults who never clothes-shop online.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free