Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)

Coke and Pepsi Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes of the contents of cans of regular Coke (n = 36, x = 12.19 oz, s = 0.11 oz) and volumes of the contents of cans of regular Pepsi (n = 36, x = 12.29 oz, s = 0.09 oz).

a. Use a 0.05 significance level to test the claim that cans of regular Coke and regular Pepsi have the same mean volume.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. What do you conclude? Does there appear to be a difference? Is there practical significance?

Short Answer

Expert verified

a. There is sufficient evidence that there is a difference between the volumes of the contents of cans of Coke and Pepsi.

b. The confidence interval for the difference between the means of sample is (-0.052 oz,0.148 oz).

c. The result is statistically significant but has no practical significance.

Step by step solution

01

Given information

The given problem is based on the data of Coke and Pepsi. This data set contains information about the volume of the contents in cans of regular Coke and regular Pepsi, summarized as follows:

\(\begin{array}{l}{{\rm{1}}^{{\rm{st}}}}\;{\rm{sample}}\;{\rm{:Regular}}\;{\rm{coke}}\\{n_1}\; = 36,\\{s_1} = 0.11\;oz\;\\{{\bar x}_1} = 12.19\;oz\end{array}\)

\(\begin{array}{l}{{\rm{2}}^{{\rm{nd}}}}\;{\rm{sample}}\;:{\rm{Regular}}\;{\rm{Pepsi}}\;\\{n_2} = 20\;\\{s_2} = 0.09\;oz\;\\{{\bar x}_2} = 12.29\;oz\end{array}\)

02

State the hypothesis

a.

The claim is states that the mean volume of a can of Coke and a can of Pepsi is the same.

\(\begin{array}{l}{H_{0\;}}:\;{\mu _1} = {\mu _2}\\{H_1}\;:\;{\mu _1} \ne \;{\mu _2}\end{array}\)

Here,\({\mu _1},{\mu _2}\)are the population mean volume contents for Coke and Pepsi, respectively.

The samples are independent with unknown and unequal population standard deviations.

03

Compute the test statistic

The formula for t-statistic is given below.

\({t_{stat}} = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }};\;({\rm{here}},\;\left( {{\mu _1} - {\mu _2}} \right)\;{\rm{is}}\;{\rm{supposed}}\;{\rm{to}}\;{\rm{be}}\;0\,)\)

04

Find critical values

For t-distribution, find the degrees of freedom as follows:

\(\begin{array}{c}df = \min \left( {\left( {{n_1} - 1} \right),\left( {{n_2} - 1} \right)} \right)\\ = \min \left( {\left( {36 - 1} \right),\left( {36 - 1} \right)} \right)\\ = 35\end{array}\)

The critical values are obtained as follows:

\(\begin{array}{c}P\left( {t > {t_{\frac{\alpha }{2}}}} \right) = \frac{\alpha }{2}\\P\left( {t > {t_{\frac{{0.05}}{2}}}} \right) = \frac{{0.05}}{2}\\P\left( {t > {t_{0.025}}} \right) = 0.025\end{array}\)

Thus, the critical value obtained from the t-table for 35 degrees of freedom is 2.0301.

05

Compute test statistic

The test statistic of the means of populations is as follows:

\(\begin{array}{c}{t_{stat}} = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }}\\ = \frac{{\left( {12.19 - 12.29} \right)}}{{\sqrt {\frac{{{{\left( {0.11} \right)}^2}}}{{36}} + \frac{{{{\left( {0.09} \right)}^2}}}{{36}}} }}\\ = - 4.22159\end{array}\)

The test statistic is \({t_{stat}} = - 4.22\).

06

Decision rule using the critical value

The decision criterion for this problem statement is given below.

If\(\left| {{t_{stat}}} \right|\; > \;{t_{crit}}\); Reject a null hypothesis at \(\alpha \)level of significance

If \(\left| {{t_{stat}}} \right|\; < {t_{crit}}\) ; Fail to accept null hypothesis at \(\alpha \)level of significance

In this case, \(\left| {{t_{stat}} = - 4.222} \right|\; > \;{t_{crit}} = 2.0301\).

Thus, the null hypothesis is rejected. It shows that there is not enough evidence to support the claim that the volumes of cans of Pepsi and Coke are the same.

07

Confidence interval for the difference of means of population

b.

For the 0.05 significance test, concerning a two-tailed test, the most appropriate confidence level is 95%.

The formula for the confidence interval of the means of population is given by

\(\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - E < \left( {{\mu _1} - {\mu _2}} \right) < \left( {{{\bar x}_1} - {{\bar x}_2}} \right) + E\).

Here, E is the margin of error that is computed as follows:

\(\begin{array}{c}E = {t_{\frac{\alpha }{2}}} \times \sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} \\ = {t_{\frac{{0.05}}{2}}} \times \sqrt {\frac{{{{0.11}^2}}}{{36}} + \frac{{{{0.09}^2}}}{{36}}} \\ = 2.0301 \times 0.024\\ = 0.0481\end{array}\)

Substitute the values in the formula.

\(\begin{array}{c}{\rm{C}}{\rm{.I}} = \left( {{{\bar x}_1} - {{\bar x}_2}} \right) - E < \left( {{\mu _1} - {\mu _2}} \right) < \left( {{{\bar x}_1} - {{\bar x}_2}} \right) + E\\ = \left( {12.19 - 12.29} \right) - 0.59 < \left( {{\mu _1} - {\mu _2}} \right) < \left( {12.19 - 12.29} \right) + 0.59\\ = - 0.052 < \left( {{\mu _1} - {\mu _2}} \right) < 0.148\end{array}\)

The 95% confidence interval includes 0, which implies that there is not enough evidence that the mean of the contents for Pepsi and Coke is the same.

There is a significant difference between the volumes of the cans.

08

Conclude the results

c.

Thus, it is concluded that there is a statistical significance for the difference in mean of the contents in Pepsi and Coke.

There does not appear to be any practical significance as the difference in the sample means is 0.10 oz, which is very small.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Testing Laboratory Gloves, The New York Times published an article about a study by Professor Denise Korniewicz, and Johns Hopkins researched subjected laboratory gloves to stress. Among 240 vinyl gloves, 63% leaked viruses; among 240 latex gloves, 7% leaked viruses. See the accompanying display of the Statdisk results. Using a 0.01 significance level, test the claim that vinyl gloves have a greater virus leak rate than latex gloves.

Does Aspirin Prevent Heart Disease? In a trial designed to test the effectiveness of aspirin in preventing heart disease, 11,037 male physicians were treated with aspirin and 11,034 male physicians were given placebos. Among the subjects in the aspirin treatment group, 139 experienced myocardial infarctions (heart attacks). Among the subjects given placebos, 239 experienced myocardial infarctions (based on data from “Final Report on the Aspirin Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine, Vol. 321: 129–135). Use a 0.05 significance level to test the claim that aspirin has no effect on myocardial infarctions.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does aspirin appear to be effective?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cardiac Arrest at Day and Night A study investigated survival rates for in hospital patients who suffered cardiac arrest. Among 58,593 patients who had cardiac arrest during the day, 11,604 survived and were discharged. Among 28,155 patients who suffered cardiac arrest at night, 4139 survived and were discharged (based on data from “Survival from In-Hospital Cardiac Arrest During Nights and Weekends,” by Puberty et al., Journal of the American Medical Association, Vol. 299, No. 7). We want to use a 0.01 significance level to test the claim that the survival rates are the same for day and night.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that for in-hospital patients who suffer cardiac arrest, the survival rate is the same for day and night?

Hypothesis Tests and Confidence Intervals for Hemoglobin

a. Exercise 2 includes a confidence interval. If you use the P-value method or the critical value method from Part 1 of this section to test the claim that women and men have the same mean hemoglobin levels, will the hypothesis tests and the confidence interval result in the same conclusion?

b. In general, if you conduct a hypothesis test using the methods of Part 1 of this section, will the P-value method, the critical value method, and the confidence interval method result in the same conclusion?

c. Assume that you want to use a 0.01 significance level to test the claim that the mean haemoglobin level in women is lessthan the mean hemoglobin level in men. What confidence level should be used if you want to test that claim using a confidence interval?

Verifying requirements in the largest clinical trial ever conducted, 401,974 children were randomly assigned to two groups. The treatment group considered of 201,229 children given the sulk vaccine for polio, and 33 of those children developed polio. The other 200,745 children were given a placebo, and 115 of those children developed polio. If we want to use the methods of this section to test the claim that the rate of polio is less for children given the sulk vaccine, are the requirements for a hypothesis test satisfied? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free