Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Treating Carpal Tunnel Syndrome Carpal tunnel syndrome is a common wrist complaintresulting from a compressed nerve, and it is often the result of extended use of repetitive wristmovements, such as those associated with the use of a keyboard. In a randomized controlledtrial, 73 patients were treated with surgery and 67 were found to have successful treatments.Among 83 patients treated with splints, 60 were found to have successful treatments (based ondata from “Splinting vs Surgery in the Treatment of Carpal Tunnel Syndrome,” by Gerritsenet al., Journal of the American Medical Association, Vol. 288, No. 10). Use the accompanyingStatCrunch display with a 0.01 significance level to test the claim that the success rate is better with surgery.

Short Answer

Expert verified

There is sufficient evidence to support the claim that the success rate for surgery is better than the success rate of splints in the treatment at a 0.01 level of significance.

Step by step solution

01

Given information

The output is known

02

Describe the hypothesis to be tested

Let p1be the population proportion of success rate in splinting and p2be population proportion of success rate in surgery.

Mathematically, the test hypothesis is,

H0:p1=p2H1:p1<p2

The test is one-tailed.

03

State the result

The decision rule:

If p value is less than the level of significance then reject the null hypothesis atlevel of significance.

Here, the p-value is 0.0009 which is less than the level of significance.

Therefore, reject null hypothesis at 0.01significance level.

04

Interpret the result

Therefore, there is sufficient evidence to support the claim that the success rate for surgery is better than the success rate of splinting.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Ground vs. Helicopter for Serious Injuries A study investigated rates of fatalities among patients with serious traumatic injuries. Among 61,909 patients transported by helicopter, 7813 died. Among 161,566 patients transported by ground services, 17,775 died (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15). Use a 0.01 significance level to test the claim that the rate of fatalities is higher for patients transported by helicopter.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Considering the test results and the actual sample rates, is one mode of transportation better than the other? Are there other important factors to consider?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim

Question:Headache Treatment In a study of treatments for very painful “cluster” headaches, 150 patients were treated with oxygen and 148 other patients were given a placebo consisting of ordinary air. Among the 150 patients in the oxygen treatment group, 116 were free from head- aches 15 minutes after treatment. Among the 148 patients given the placebo, 29 were free from headaches 15 minutes after treatment (based on data from “High-Flow Oxygen for Treatment of Cluster Headache,” by Cohen, Burns, and Goads by, Journal of the American Medical Association, Vol. 302, No. 22). We want to use a 0.01 significance level to test the claim that the oxygen treatment is effective.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the oxygen treatment effective?

Variation of Heights Use the sample data given in Exercise 3 “Heights” and test the claim that women and men have heights with the same variation. Use a 0.05 significance level.

Heights Use a 0.01 significance level with the sample data from Exercise 3 to test the claim that women have heights with a mean that is less than the mean height of men.

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)Color and Creativity Researchers from the University of British Columbia conducted trials to investigate the effects of color on creativity. Subjects with a red background were asked to think of creative uses for a brick; other subjects with a blue background were given the same task. Responses were scored by a panel of judges and results from scores of creativity are given below. Higher scores correspond to more creativity. The researchers make the claim that “blue enhances performance on a creative task.”

a. Use a 0.01 significance level to test the claim that blue enhances performance on a creative task. b. Construct the confidence interval appropriate for the hypothesis test in part (a). What is it about the confidence interval that causes us to reach the same conclusion from part (a)?Red Background: n = 35, x = 3.39, s = 0.97Blue Background: n = 36, x = 3.97, s = 0.63

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free