Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)Coke and Pepsi Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes of the contents of cans of regular Coke (n = 36, x = 12.19 oz, s = 0.11 oz) and volumes of the contents of cans of regular Pepsi (n = 36, x = 12.29 oz, s = 0.09 oz).

a. Use a 0.05 significance level to test the claim that cans of regular Coke and regular Pepsi have the same mean volume.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. What do you conclude? Does there appear to be a difference? Is there practical significance?

Short Answer

Expert verified

a. There is sufficient evidence that there is a difference between the volumes of the contents of cans of Coke and Pepsi.

b. The confidence interval for the difference between the means of sample is (-0.052 oz,0.148 oz).

c. The result is statistically significant but has no practical significance.

Step by step solution

01

Given information

The given problem is based on the data of Coke and Pepsi. This data set contains information about the volume of the contents in cans of regular Coke and regular Pepsi, summarized as follows:

1stsample:Regularcoken1=36,s1=0.11ozx¯1=12.19oz

2ndsample:RegularPepsin2=20s2=0.09ozx¯2=12.29oz

02

State the hypothesis

a.

The claim is states that the mean volume of a can of Coke and a can of Pepsi is the same.

H0:μ1=μ2H1:μ1μ2

Here,μ1,μ2are the population mean volume contents for Coke and Pepsi, respectively.

The samples are independent with unknown and unequal population standard deviations.

03

Compute the test statistic

The formula for t-statistic is given below.

tstat=x¯1-x¯2-μ1-μ2s12n1+s22n2;(here,μ1-μ2issupposedtobe0)

04

Find critical values

For t-distribution, find the degrees of freedom as follows:

df=minn1-1,n2-1=min36-1,36-1=35

The critical values are obtained as follows:

Pt>tα2=α2Pt>t0.052=0.052Pt>t0.025=0.025

Thus, the critical value obtained from the t-table for 35 degrees of freedom is 2.0301.

05

Compute test statistic

The test statistic of the means of populations is as follows:

tstat=x¯1-x¯2s12n1+s22n2=12.19-12.290.11236+0.09236=-4.22159

The test statistic is tstat=-4.22.

06

Decision rule using the critical value

The decision criterion for this problem statement is given below.

If tstat>tcrit; Reject a null hypothesis at level of significance

If tstat<tcrit; Fail to accept null hypothesis at level of significance

In this case, tstat=-4.222>tcrit=2.0301.

Thus, the null hypothesis is rejected. It shows that there is not enough evidence to support the claim that the volumes of cans of Pepsi and Coke are the same.

07

Confidence interval for the difference of means of population

b.

For the 0.05 significance test, concerning a two-tailed test, the most appropriate confidence level is 95%.

The formula for the confidence interval of the means of population is given by

x¯1-x¯2-E<μ1-μ2<x¯1-x¯2+E

Here, E is the margin of error that is computed as follows:

E=tα2×s12n1+s22n2=t0.052×0.11236+0.09236=2.0301×0.024=0.0481

Substitute the values in the formula.

C.I=x¯1-x¯2-E<μ1-μ2<x¯1-x¯2+E=12.19-12.29-0.59<μ1-μ2<12.19-12.29+0.59=-0.052<μ1-μ2<0.148

The 95% confidence interval includes 0, which implies that there is not enough evidence that the mean of the contents for Pepsi and Coke is the same.

There is a significant difference between the volumes of the cans.

08

Conclude the results

c.

Thus, it is concluded that there is a statistical significance for the difference in mean of the contents in Pepsi and Coke.

There does not appear to be any practical significance as the difference in the sample means is 0.10 oz, which is very small.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Hypothesis and conclusions refer to the hypothesis test described in exercise 1.

a. Identify the null hypothesis and alternative hypothesis

b. If the p-value for test is reported as “less than 0.001,” what should we conclude about the original claim?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

BMI We know that the mean weight of men is greater than the mean weight of women, and the mean height of men is greater than the mean height of women. A person’s body mass index (BMI) is computed by dividing weight (kg) by the square of height (m). Given below are the BMI statistics for random samples of females and males taken from Data Set 1 “Body Data” in Appendix B.

a. Use a 0.05 significance level to test the claim that females and males have the same mean BMI.

b. Construct the confidence interval that is appropriate for testing the claim in part (a).

c. Do females and males appear to have the same mean BMI?

Female BMI: n = 70, \(\bar x\) = 29.10, s = 7.39

Male BMI: n = 80, \(\bar x\) = 28.38, s = 5.37

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Treating Carpal Tunnel Syndrome Carpal tunnel syndrome is a common wrist complaintresulting from a compressed nerve, and it is often the result of extended use of repetitive wristmovements, such as those associated with the use of a keyboard. In a randomized controlledtrial, 73 patients were treated with surgery and 67 were found to have successful treatments.Among 83 patients treated with splints, 60 were found to have successful treatments (based ondata from “Splinting vs Surgery in the Treatment of Carpal Tunnel Syndrome,” by Gerritsenet al., Journal of the American Medical Association, Vol. 288, No. 10). Use the accompanyingStatCrunch display with a 0.01 significance level to test the claim that the success rate is better with surgery.

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Testing Laboratory Gloves, The New York Times published an article about a study by Professor Denise Korniewicz, and Johns Hopkins researched subjected laboratory gloves to stress. Among 240 vinyl gloves, 63% leaked viruses; among 240 latex gloves, 7% leaked viruses. See the accompanying display of the Statdisk results. Using a 0.01 significance level, test the claim that vinyl gloves have a greater virus leak rate than latex gloves.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free