Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Before/After Treatment Results Captopril is a drug designed to lower systolic blood pressure. When subjects were treated with this drug, their systolic blood pressure readings (in mm Hg) were measured before and after the drug was taken. Results are given in the accompanying table (based on data from “Essential Hypertension: Effect of an Oral Inhibitor of Angiotensin-Converting Enzyme,” by MacGregor et al., British Medical Journal, Vol. 2). Using a 0.01 significance level, is there sufficient evidence to support the claim that captopril is effective in lowering systolic blood pressure?

Subject

A

B

C

D

E

F

G

H

I

J

K

L

Before

200

174

198

170

179

182

193

209

185

155

169

210

After

191

170

177

167

159

151

176

183

159

145

146

177

Short Answer

Expert verified

There is enough evidence to conclude that the drug Captopril is effective in lowering systolic blood pressure levels.

Step by step solution

01

Given information

The systolic blood pressure measurements of a sample of 12 subjects are recorded as:“before the drug Captopril is taken” and “after the drug Captopril is taken”.

02

Hypotheses

It is claimed that the drug Captopril is effective in lowering systolic blood pressure levels.

Corresponding to the given claim, the following hypotheses are set up:

Null Hypothesis:

\({H_0}:{\mu _d} = 0\)

Alternative Hypothesis:

\({H_1}:{\mu _d} > 0\)

The test is right-tailed.

Where \({\mu _d}\)be the mean difference between the systolic blood pressure levels before and after taking the drug.

03

Differences in the values of each matched pair

The following table shows the differences in the systolic blood pressure levels for each matched pair:

Subject

A

B

C

D

E

F

G

H

I

J

K

L

Before

200

174

198

170

179

182

193

209

185

155

169

210

After

191

170

177

167

159

151

176

183

159

145

146

177

Differences

(\({d_i}\))

9

4

21

3

20

31

17

26

26

10

23

33

The mean value of the differences is computed below:

\(\begin{aligned} \bar d &= \frac{{\sum\limits_{i = 1}^n {{d_i}} }}{n}\\ &= \frac{{9 + 4 + ...... + 33}}{{12}}\\ &= 18.58\end{aligned}\)

The standard deviation of the differences is computed below:

\(\begin{aligned} {s_d} &= \sqrt {\frac{{\sum\limits_{i = 1}^n {{{({d_i} - \bar d)}^2}} }}{{n - 1}}} \\ &= \sqrt {\frac{{{{\left( {9 - 18.58} \right)}^2} + {{\left( {4 - 18.58} \right)}^2} + ....... + {{\left( {33 - 18.58} \right)}^2}}}{{12 - 1}}} \\ &= 10.10\end{aligned}\)

The mean value of the differences for the population of matched pairs \(\left( {{\mu _d}} \right)\) is considered to be equal to 0.

04

Calculate the test statistic, critical value and p-value

The value of the test statistic is computed as shown:

\(\begin{aligned} t &= \frac{{\bar d - {\mu _d}}}{{\frac{{{s_d}}}{{\sqrt n }}}}\\ &= \frac{{18.58 - 0}}{{\frac{{10.10}}{{\sqrt {12} }}}}\\ &= 6.371\end{aligned}\)

The degrees of freedom are computed below:

\(\begin{aligned} df &= n - 1\\ &= 12 - 1\\ &= 11\end{aligned}\)

The critical value of t at\(\alpha = 0.01\)and degrees of freedom equal to 11 for a right-tailed test is equal to 2.7181.

The corresponding p-value is equal to 0.00003.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Denomination Effect A trial was conducted with 75 women in China given a 100-yuan bill, while another 75 women in China were given 100 yuan in the form of smaller bills (a 50-yuan bill plus two 20-yuan bills plus two 5-yuan bills). Among those given the single bill, 60 spent some or all of the money. Among those given the smaller bills, 68 spent some or all of the money (based on data from “The Denomination Effect,” by Raghubir and Srivastava, Journal of Consumer Research, Vol. 36). We want to use a 0.05 significance level to test the claim that when given a single large bill, a smaller proportion of women in China spend some or all of the money when compared to the proportion of women in China given the same amount in smaller bills.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. If the significance level is changed to 0.01, does the conclusion change?

Confidence Interval for Haemoglobin

Large samples of women and men are obtained, and the haemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: -1.76g/dL<μ1-μ2<-1.62g/dL.

a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?

b. Write a brief statement that interprets that confidence interval.

c. Express the confidence interval with measures from men being population 1 and measures from women being population 2.

Determining Sample Size The sample size needed to estimate the difference between two population proportions to within a margin of error E with a confidence level of 1 - a can be found by using the following expression:

\({\bf{E = }}{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}}\sqrt {\frac{{{{\bf{p}}_{\bf{1}}}{{\bf{q}}_{\bf{1}}}}}{{{{\bf{n}}_{\bf{1}}}}}{\bf{ + }}\frac{{{{\bf{p}}_{\bf{2}}}{{\bf{q}}_{\bf{2}}}}}{{{{\bf{n}}_{\bf{2}}}}}} \)

Replace \({{\bf{n}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{n}}_{\bf{2}}}\) by n in the preceding formula (assuming that both samples have the same size) and replace each of \({{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{q}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}\;{\bf{and}}\;{{\bf{q}}_{\bf{2}}}\)by 0.5 (because their values are not known). Solving for n results in this expression:

\({\bf{n = }}\frac{{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}^{\bf{2}}}}{{{\bf{2}}{{\bf{E}}^{\bf{2}}}}}\)

Use this expression to find the size of each sample if you want to estimate the difference between the proportions of men and women who own smartphones. Assume that you want 95% confidence that your error is no more than 0.03.

Hypothesis Tests and Confidence Intervals for Hemoglobin

a. Exercise 2 includes a confidence interval. If you use the P-value method or the critical value method from Part 1 of this section to test the claim that women and men have the same mean hemoglobin levels, will the hypothesis tests and the confidence interval result in the same conclusion?

b. In general, if you conduct a hypothesis test using the methods of Part 1 of this section, will the P-value method, the critical value method, and the confidence interval method result in the same conclusion?

c. Assume that you want to use a 0.01 significance level to test the claim that the mean haemoglobin level in women is lessthan the mean hemoglobin level in men. What confidence level should be used if you want to test that claim using a confidence interval?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free