Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–16, test the given claim.

Color and Creativity Researchers from the University of British Columbia conducted trials to investigate the effects of color on creativity. Subjects with a red background were asked to think of creative uses for a brick; other subjects with a blue background were given the same task. Responses were scored by a panel of judges and results from scores of creativity are given below. Use a 0.05 significance level to test the claim that creative task scores have the same variation with a red background and a blue background.

Red Background:

n = 35, \(\bar x\) = 3.39, s = 0.97

Blue Background:

n = 36, \(\bar x\)= 3.97, s = 0.63

Short Answer

Expert verified

There is enough evidence to reject the claim that creative task scores have the same variation with a red background and a blue background.

Step by step solution

01

Given information

For a sample of 35 subjects who were given a creative task with a red background, the mean score of creativity is equal to 3.39, and the standard deviation is equal to 0.97.For another sample of 36 subjects who were given a creative task with a blue background, the mean score of creativity is equal to 3.97 and the standard deviation is equal to 0.63.

It is claimed that the variation in the creative score withthe blue background is equal to the variation in the creative score withthe red background.

02

Hypotheses

Let\({\sigma _1}\)and\({\sigma _2}\)be the populationstandard deviations of the creative scores corresponding to the red background and the blue background, respectively.

Null Hypothesis:The population standard deviation of the scores with the red background is equal to the population standard deviation of the scores with the blue background.

Symbolically,

\({H_0}:{\sigma _1} = {\sigma _2}\)

Alternative Hypothesis:The population standard deviation of the scores with the red background is not equal to the population standard deviation of the scores with the blue background.

Symbolically,

\({H_1}:{\sigma _1} \ne {\sigma _2}\)

03

Compute the test statistic

Since two independent samples involve a claim about the population standard deviation, apply an F-test.

Consider the larger sample variance to be\(s_1^2\)and the corresponding sample size to be\({n_1}\).

The following values are obtained:

\({\left( {0.97} \right)^2} = 0.9409\)

\({\left( {0.63} \right)^2} = 0.3969\)

Here,\(s_1^2\)is the sample variance corresponding to the red background and has a value equal to 0.9409.

\(s_2^2\)is the sample variance corresponding to the blue background and has a value equal to 0.3969.

Substitute the respective valuesto calculate the F statistic:

\(\begin{array}{c}F = \frac{{s_1^2}}{{s_2^2}}\\ = \frac{{{{\left( {0.97} \right)}^2}}}{{{{\left( {0.63} \right)}^2}}}\\ = 2.371\end{array}\)

Thus, F is equal to 2.371.

04

Critical Value and p-value

The value of the numerator degrees of freedom is equal to:

\(\begin{array}{c}{n_1} - 1 = 35 - 1\\ = 34\end{array}\)

The value of the denominator degrees of freedom is equal to:

\(\begin{array}{c}{n_2} - 1 = 36 - 1\\ = 35\end{array}\)

For the F test, the critical value corresponding to the right-tail is considered.

The critical value can be obtained using the F-distribution table with numerator degrees of freedom equal to 34 and denominator degrees of freedom equal to 35 for a right-tailed test.

The level of significance is equal to:

\(\begin{array}{c}\frac{\alpha }{2} = \frac{{0.05}}{2}\\ = 0.025\end{array}\)

Thus, the critical value is equal to 1.9678.

The two-tailed p-value for F equal to 2.371 is equal to 0.0129.

05

Conclusion

Since the test statistic value is greater than the critical value and the p-value is less than 0.05, the null hypothesis is rejected.

Thus, there is enough evidence to rejectthe claimthat creative task scores have the same variation with a red background and a blue background.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Accuracy of Fast Food Drive-Through Orders In a study of Burger King drive-through orders, it was found that 264 orders were accurate and 54 were not accurate. For McDonald’s, 329 orders were found to be accurate while 33 orders were not accurate (based on data from QSR magazine). Use a 0.05 significance level to test the claim that Burger King and McDonald’s have the same accuracy rates.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Relative to accuracy of orders, does either restaurant chain appear to be better?

Independent and Dependent Samples Which of the following involve independent samples?

a. Data Set 14 “Oscar Winner Age” in Appendix B includes pairs of ages of actresses and actors at the times that they won Oscars for Best Actress and Best Actor categories. The pair of ages of the winners is listed for each year, and each pair consists of ages matched according to the year that the Oscars were won.

b. Data Set 15 “Presidents” in Appendix B includes heights of elected presidents along with the heights of their main opponents. The pair of heights is listed for each election.

c. Data Set 26 “Cola Weights and Volumes” in Appendix B includes the volumes of the contents in 36 cans of regular Coke and the volumes of the contents in 36 cans of regular Pepsi.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Ground vs. Helicopter for Serious Injuries A study investigated rates of fatalities among patients with serious traumatic injuries. Among 61,909 patients transported by helicopter, 7813 died. Among 161,566 patients transported by ground services, 17,775 died (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15). Use a 0.01 significance level to test the claim that the rate of fatalities is higher for patients transported by helicopter.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Considering the test results and the actual sample rates, is one mode of transportation better than the other? Are there other important factors to consider?

Using Confidence Intervals

a. Assume that we want to use a 0.05 significance level to test the claim that p1 < p2. Which is better: A hypothesis test or a confidence interval?

b. In general, when dealing with inferences for two population proportions, which two of the following are equivalent: confidence interval method; P-value method; critical value method?

c. If we want to use a 0.05 significance level to test the claim that p1 < p2, what confidence level should we use?

d. If we test the claim in part (c) using the sample data in Exercise 1, we get this confidence interval: -0.000508 < p1 - p2 < - 0.000309. What does this confidence interval suggest about the claim?

Confidence Interval for Haemoglobin

Large samples of women and men are obtained, and the haemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: -1.76g/dL<μ1-μ2<-1.62g/dL.

a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?

b. Write a brief statement that interprets that confidence interval.

c. Express the confidence interval with measures from men being population 1 and measures from women being population 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free