Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Testing Laboratory Gloves, The New York Times published an article about a study by Professor Denise Korniewicz, and Johns Hopkins researched subjected laboratory gloves to stress. Among 240 vinyl gloves, 63% leaked viruses; among 240 latex gloves, 7% leaked viruses. See the accompanying display of the Statdisk results. Using a 0.01 significance level, test the claim that vinyl gloves have a greater virus leak rate than latex gloves.

Short Answer

Expert verified

Reject the null hypothesis under 0.01 significance level.

There is sufficient evidence to support the claim that vinyl gloves have a greater virus leak rate than latex gloves.

Step by step solution

01

Given information

The output for the test

02

Describe the hypothesis to be tested.

Let p1be the population proportion of virus leak rate of vinyl gloves and p2be population proportion of virus leak rate of latex gloves.

Mathematically, the test hypothesis is:

H0:p1=p2H1:p1>p2

03

State the result

From the output the p-value is 0.0000.

Decision rule:

If the p-value is smaller than 0.01, reject the null hypothesis. Otherwise, fail to reject the null hypothesis.

As the p-value is lesser than 0.01, reject the null hypothesis.

Thus, there is enough evidence to conclude that the leak rate is greater in vinyl gloves than latex.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

BMI We know that the mean weight of men is greater than the mean weight of women, and the mean height of men is greater than the mean height of women. A person’s body mass index (BMI) is computed by dividing weight (kg) by the square of height (m). Given below are the BMI statistics for random samples of females and males taken from Data Set 1 “Body Data” in Appendix B.

a. Use a 0.05 significance level to test the claim that females and males have the same mean BMI.

b. Construct the confidence interval that is appropriate for testing the claim in part (a).

c. Do females and males appear to have the same mean BMI?

Female BMI: n = 70, \(\bar x\) = 29.10, s = 7.39

Male BMI: n = 80, \(\bar x\) = 28.38, s = 5.37

Find and interpret 95 % confidence interval for the proportion of all US adults who never clothes-shop online.

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of \({p_1} = {p_2}\) (with a 0.05 significance level) and a 95% confidence interval estimate of \({p_1} - {p_2}\).

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Car and Taxi Ages When the author visited Dublin, Ireland (home of Guinness Brewery employee William Gosset, who first developed the t distribution), he recorded the ages of randomly selected passenger cars and randomly selected taxis. The ages can be found from the license plates. (There is no end to the fun of traveling with the author.) The ages (in years) are listed below. We might expect that taxis would be newer, so test the claim that the mean age of cars is greater than the mean age of taxis.

Car

Ages

4

0

8

11

14

3

4

4

3

5

8

3

3

7

4

6

6

1

8

2

15

11

4

1

1

8

Taxi Ages

8

8

0

3

8

4

3

3

6

11

7

7

6

9

5

10

8

4

3

4

Refer to Exercise 10.83 and find a 90 % confidence interval for the difference between the mean numbers of acute postoperative days in the hospital with the dynamic and static systems.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free