Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Robust What does it mean when we say that the F test described in this section is not robust against departures from normality?

Short Answer

Expert verified

The given statement means that the F test will not give the desired and accurate results if the populations from which the samples are extracted are not normally distributed, irrespective of the sample size.

Step by step solution

01

Given information

It is given that the F test is not robust against departures from normality.

02

Interpretation of the F-test not being robust

In statistics, robust means that a statistic works well for the given hypothesis test and produces a correct conclusion.

If the distribution of the test statistic is robust against departure from normality, it implies that the distribution is not very strict about the requirement of the population to be normally distributed and will produce accurate results even if the population is not normally distributed.

If the distribution of the test statistic is not robust against departure from normality, the distribution is very strict about the requirement of the population to be normally distributed and will not work well if the population is not normally distributed.

Therefore, the F test is not robust against departure from normality and will not give accurate results if the populations from which the samples are extracted are not normally distributed, irrespective of the sample size.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7โ€“22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

License Plate Laws The Chapter Problem involved passenger cars in Connecticut and passenger cars in New York, but here we consider passenger cars and commercial trucks. Among2049 Connecticut passenger cars, 239 had only rear license plates. Among 334 Connecticuttrucks, 45 had only rear license plates (based on samples collected by the author). A reasonable hypothesis is that passenger car owners violate license plate laws at a higher rate than owners of commercial trucks. Use a 0.05 significance level to test that hypothesis.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

Find and interpret 95 % confidence interval for the proportion of all US adults who never clothes-shop online.

Braking Reaction Times: Histogram Listed below are sorted braking reaction times (in 1>10,000 sec) for male and female subjects (based on data from the RT-2S Brake Reaction Time Tester). Construct a histogram for the reaction times of males. Use a class width of 8 and use 28 as the lower limit of the first class. For the horizontal axis, use class midpoint values. Does it appear that the data are from a population with a normal distribution?

Males

28

30

31

34

34

36

36

36

36

38

39

40

40

40

40

41

41

41

42

42

44

46

47

48

48

49

51

53

54

54

56

57

60

61

61

63

Females

22

24

34

36

36

37

39

41

41

43

43

45

45

47

53

54

54

55

56

57

57

57

58

61

62

63

66

67

68

71

72

76

77

78

79

80

In Exercises 5โ€“20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with โ€œTableโ€ answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

IQ and Lead Exposure Data Set 7 โ€œIQ and Leadโ€ in Appendix B lists full IQ scores for a random sample of subjects with low lead levels in their blood and another random sample of subjects with high lead levels in their blood. The statistics are summarized below.

a. Use a 0.05 significance level to test the claim that the mean IQ score of people with low blood lead levels is higher than the mean IQ score of people with high blood lead levels.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Does exposure to lead appear to have an effect on IQ scores?

Low Blood Lead Level: n = 78, \(\bar x\) = 92.88462, s = 15.34451

High Blood Lead Level: n = 21,\(\bar x\)= 86.90476, s = 8.988352

In Exercises 5โ€“20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with โ€œTableโ€ answers based on Table A-3 with df equal to the smaller of n1โˆ’1 and n2โˆ’1.)Color and Creativity Researchers from the University of British Columbia conducted trials to investigate the effects of color on creativity. Subjects with a red background were asked to think of creative uses for a brick; other subjects with a blue background were given the same task. Responses were scored by a panel of judges and results from scores of creativity are given below. Higher scores correspond to more creativity. The researchers make the claim that โ€œblue enhances performance on a creative task.โ€

a. Use a 0.01 significance level to test the claim that blue enhances performance on a creative task. b. Construct the confidence interval appropriate for the hypothesis test in part (a). What is it about the confidence interval that causes us to reach the same conclusion from part (a)?Red Background: n = 35, x = 3.39, s = 0.97Blue Background: n = 36, x = 3.97, s = 0.63

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free