Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1–5, use the following survey results: Randomly selected subjects were asked if they were aware that the Earth has lost half of its wildlife population during the past 50 years. Among 1121 women, 23% said that they were aware. Among 1084 men, 26% said that they were aware (based on data from a Harris poll).

Biodiversity When testing the claim that\({p_1} = {p_2}\), a test statistic of z = -1.64 is obtained. Find the P-value for the hypothesis test.

Short Answer

Expert verified

The p-value is equal to 0.1010.

Step by step solution

01

Given information

In a sample of 1121 women, 23% said that they were aware of the fact that the Earth has lost half of its wildlife population during the past 50 years. In another sample of 1084 men, 26% said that they were aware that the Earth had lost half of its wildlife population during the past 50 years. It is claimed that the two population proportions are equal.

02

Find the p-value

The given claim has an equality sign. This implies that the alternative hypothesis for testing the claim will be as follows:

Alternate Hypothesis: The proportion of women who were aware of the fact is not equal tothe proportion of men who were aware of the given fact.

Symbolically,

\({H_1}:{p_1} \ne {\rm{ }}{p_2}\)

Since there is an unequal sign in the alternative hypothesis, the test is two-tailed.

The value of the test statistic is equal to -1.64.

The two-tailed p-value for the test statistic value equal to -1.64 has the following expression:

\(P\left( {z < - 1.64} \right) + P\left( {z > 1.64} \right)\)

Referring to the standard normal distribution table, the left-tailed p-value when the z-score is equal to -1.64 is equal to 0.0505.

Referring to the standard normal distribution table, the left-tailed p-value when the z-score is equal to -1.64 is equal to 0.0505.

Thus, the p-value becomes:

\(\begin{array}{c}P\left( {z < - 1.64} \right) + P\left( {z > 1.64} \right) = 0.0505 + 0.0505\\ = 0.1010\end{array}\)

Therefore, the p-value is equal to 0.1010.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Lefties In a random sample of males, it was found that 23 write with their left hands and 217 do not. In a random sample of females, it was found that 65 write with their left hands and 455 do not (based on data from “The Left-Handed: Their Sinister History,” by ElaineFowler Costas, Education Resources Information Center, Paper 399519). We want to use a 0.01significance level to test the claim that the rate of left-handedness among males is less than that among females.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the rate of left-handedness among males less than the rate of left-handedness among females?

Independent and Dependent Samples Which of the following involve independent samples?

a. Data Set 14 “Oscar Winner Age” in Appendix B includes pairs of ages of actresses and actors at the times that they won Oscars for Best Actress and Best Actor categories. The pair of ages of the winners is listed for each year, and each pair consists of ages matched according to the year that the Oscars were won.

b. Data Set 15 “Presidents” in Appendix B includes heights of elected presidents along with the heights of their main opponents. The pair of heights is listed for each election.

c. Data Set 26 “Cola Weights and Volumes” in Appendix B includes the volumes of the contents in 36 cans of regular Coke and the volumes of the contents in 36 cans of regular Pepsi.

Denomination Effect In the article “The Denomination Effect” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36, researchers reported results from studies conducted to determine whether people have different spending characteristics when they have larger bills, such as a \(20 bill, instead of smaller bills, such as twenty \)1 bills. In one trial, 89 undergraduate business students from two different colleges were randomly assigned to two different groups. In the “dollar bill” group, 46 subjects were given dollar bills; the “quarter” group consisted of 43 subjects given quarters. All subjects from both groups were given a choice of keeping the money or buying gum or mints. The article includes the claim that “money in a large denomination is less likely to be spent relative to an equivalent amount in smaller denominations.” Test that claim using a 0.05 significance level with the following sample data from the study.

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Bad Stuff in Children’s Movies Data Set 11 “Alcohol and Tobacco in Movies” in Appendix B includes lengths of times (seconds) of tobacco use shown in animated children’s movies. For the Disney movies, n = 33,\(\bar x\)= 61.6 sec, s = 118.8 sec. For the other movies, n = 17,\(\bar x\)= 49.3 sec, s = 69.3 sec. The sorted times for the non-Disney movies are listed below.

a. Use a 0.05 significance level to test the claim that Disney animated children’s movies and other animated children’s movies have the same mean time showing tobacco use.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Conduct a quick visual inspection of the listed times for the non-Disney movies and comment on the normality requirement. How does the normality of the 17 non-Disney times affect the results?

0 0 0 0 0 0 1 5 6 17 24 55 91 117 155 162 205

Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of and)

Regular Coke and Diet Coke Data Set 26 “Cola Weights and Volumes” in Appendix B includes weights (lb) of the contents of cans of Diet Coke (n= 36, x¯= 0.78479 lb, s= 0.00439 lb) and of the contents of cans of regular Coke (n= 36, x¯= 0.81682 lb, s= 0.00751 lb).

a. Use a 0.05 significance level to test the claim that the contents of cans of Diet Coke have weights with a mean that is less than the mean for regular Coke.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. Can you explain why cans of Diet Coke would weigh less than cans of regular Coke?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free