Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hypothesis and conclusions refer to the hypothesis test described in exercise 1.

a. Identify the null hypothesis and alternative hypothesis

b. If the p-value for test is reported as “less than 0.001,” what should we conclude about the original claim?

Short Answer

Expert verified

a. The hypotheses:

H0:p1=p2H1:p1<p2

b. There is enough evidence to support the claim that the rate of polio is lesser for children given the sulk vaccine.

Step by step solution

01

Step-1: Given information

Refer to exercise 1 for the study which is conducted on 401974 children divided into two groups:

Treatment: of 201229, 33 developed polio.

Placebo: of 200,745, 115 developed polio.

02

Step-2: Express the claim

The claim to be tested is whether the rate of polio is less for children in the treatment group or not.

The test of proportions is expected to be conducted.

03

Step-3: Identify the hypotheses

a.

A statistical hypothesis is an assumption about a population parameter.

The null hypothesis for conducting the given test is as follows:

The rate of polio is less for children given the Sulk vaccine than for the Placebo.

The alternative hypothesis is as follows:

The rate of polio is less for children given the Sulk vaccine than the Placebo vaccine.

Let p1,p2be the population proportion of children with polio in treatment and placebo group respectively.

Thus, the hypotheses are formulated as,

H0:p1=p2H1:p1<p2

04

Step-4: State the decision for the test

b.

The p-value reported for the hypotheses is less than 0.001.

The decision rule states the following,

If the p-value is lower than the significance level, reject the null hypothesis. Otherwise, it will fail to reject the null hypothesis.

Assume that the significance level is 0.05.

In this case, 0.001 is lesser than 0.05. Thus, the null hypothesis is rejected.

There is sufficient evidence to conclude that the rate of polio is lower in case of Salk vaccine.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Braking Reaction Times: Normal? The accompanying normal quantile plot is obtained by using the braking reaction times of females listed in Exercise 6. Interpret this graph.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Smoking Cessation Programs Among 198 smokers who underwent a “sustained care” program, 51 were no longer smoking after six months. Among 199 smokers who underwent a “standard care” program, 30 were no longer smoking after six months (based on data from “Sustained Care Intervention and Postdischarge Smoking Cessation Among Hospitalized Adults,” by Rigotti et al., Journal of the American Medical Association, Vol. 312, No. 7). We want to use a 0.01 significance level to test the claim that the rate of success for smoking cessation is greater with the sustained care program.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Does the difference between the two programs have practical significance?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cardiac Arrest at Day and Night A study investigated survival rates for in hospital patients who suffered cardiac arrest. Among 58,593 patients who had cardiac arrest during the day, 11,604 survived and were discharged. Among 28,155 patients who suffered cardiac arrest at night, 4139 survived and were discharged (based on data from “Survival from In-Hospital Cardiac Arrest During Nights and Weekends,” by Puberty et al., Journal of the American Medical Association, Vol. 299, No. 7). We want to use a 0.01 significance level to test the claim that the survival rates are the same for day and night.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that for in-hospital patients who suffer cardiac arrest, the survival rate is the same for day and night?

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of p1=p2(with a 0.05 significance level) and a 95% confidence interval estimate ofp1-p2.

Does Aspirin Prevent Heart Disease? In a trial designed to test the effectiveness of aspirin in preventing heart disease, 11,037 male physicians were treated with aspirin and 11,034 male physicians were given placebos. Among the subjects in the aspirin treatment group, 139 experienced myocardial infarctions (heart attacks). Among the subjects given placebos, 239 experienced myocardial infarctions (based on data from “Final Report on the Aspirin Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine, Vol. 321: 129–135). Use a 0.05 significance level to test the claim that aspirin has no effect on myocardial infarctions.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does aspirin appear to be effective?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free