Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hypothesis and conclusions refer to the hypothesis test described in exercise 1.

a. Identify the null hypothesis and alternative hypothesis

b. If the p-value for test is reported as “less than 0.001,” what should we conclude about the original claim?

Short Answer

Expert verified

a. The hypotheses:

H0:p1=p2H1:p1<p2

b. There is enough evidence to support the claim that the rate of polio is lesser for children given the sulk vaccine.

Step by step solution

01

Step-1: Given information

Refer to exercise 1 for the study which is conducted on 401974 children divided into two groups:

Treatment: of 201229, 33 developed polio.

Placebo: of 200,745, 115 developed polio.

02

Step-2: Express the claim

The claim to be tested is whether the rate of polio is less for children in the treatment group or not.

The test of proportions is expected to be conducted.

03

Step-3: Identify the hypotheses

a.

A statistical hypothesis is an assumption about a population parameter.

The null hypothesis for conducting the given test is as follows:

The rate of polio is less for children given the Sulk vaccine than for the Placebo.

The alternative hypothesis is as follows:

The rate of polio is less for children given the Sulk vaccine than the Placebo vaccine.

Let p1,p2be the population proportion of children with polio in treatment and placebo group respectively.

Thus, the hypotheses are formulated as,

H0:p1=p2H1:p1<p2

04

Step-4: State the decision for the test

b.

The p-value reported for the hypotheses is less than 0.001.

The decision rule states the following,

If the p-value is lower than the significance level, reject the null hypothesis. Otherwise, it will fail to reject the null hypothesis.

Assume that the significance level is 0.05.

In this case, 0.001 is lesser than 0.05. Thus, the null hypothesis is rejected.

There is sufficient evidence to conclude that the rate of polio is lower in case of Salk vaccine.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

Are Male Professors and Female Professors Rated Differently?

a. Use a 0.05 significance level to test the claim that two samples of course evaluation scores are from populations with the same mean. Use these summary statistics: Female professors:

n = 40, \(\bar x\)= 3.79, s = 0.51; male professors: n = 53, \(\bar x\) = 4.01, s = 0.53. (Using the raw data in Data Set 17 “Course Evaluations” will yield different results.)

b. Using the summary statistics given in part (a), construct a 95% confidence interval estimate of the difference between the mean course evaluations score for female professors and male professors.

c. Example 1 used similar sample data with samples of size 12 and 15, and Example 1 led to the conclusion that there is not sufficient evidence to warrant rejection of the null hypothesis.

Do the larger samples in this exercise affect the results much?

Braking Reaction Times: Normal? The accompanying normal quantile plot is obtained by using the braking reaction times of females listed in Exercise 6. Interpret this graph.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Ground vs. Helicopter for Serious Injuries A study investigated rates of fatalities among patients with serious traumatic injuries. Among 61,909 patients transported by helicopter, 7813 died. Among 161,566 patients transported by ground services, 17,775 died (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15). Use a 0.01 significance level to test the claim that the rate of fatalities is higher for patients transported by helicopter.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Considering the test results and the actual sample rates, is one mode of transportation better than the other? Are there other important factors to consider?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)Coke and Pepsi Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes of the contents of cans of regular Coke (n = 36, x = 12.19 oz, s = 0.11 oz) and volumes of the contents of cans of regular Pepsi (n = 36, x = 12.29 oz, s = 0.09 oz).

a. Use a 0.05 significance level to test the claim that cans of regular Coke and regular Pepsi have the same mean volume.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. What do you conclude? Does there appear to be a difference? Is there practical significance?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Clinical Trials of OxyContin OxyContin (oxycodone) is a drug used to treat pain, butit is well known for its addictiveness and danger. In a clinical trial, among subjects treatedwith OxyContin, 52 developed nausea and 175 did not develop nausea. Among other subjectsgiven placebos, 5 developed nausea and 40 did not develop nausea (based on data from PurduePharma L.P.). Use a 0.05 significance level to test for a difference between the rates of nauseafor those treated with OxyContin and those given a placebo.

a. Use a hypothesis test.

b. Use an appropriate confidence interval.

c. Does nausea appear to be an adverse reaction resulting from OxyContin?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free