Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of p1=p2(with a 0.05 significance level) and a 95% confidence interval estimate ofp1-p2.

Short Answer

Expert verified

Using the hypothesis test method, the null hypothesis is rejected. Thus, there is sufficient evidence to reject the claim that the two population proportions are equal.

Using the confidence interval method, the95% confidence interval estimate for the difference in the two proportions is . Since the value of 0 is included, it is said thatthere is not sufficient evidence to reject the claim that the two population proportions are equal.

The conclusions of the claim are different for the two methods.

Step by step solution

01

Given information

In a sample consisting of 20 people, 10 possess a given attribute. In another sample of 2000 people, 1404 people possess the attribute.

02

Describe the Hypotheses

It is claimed that the proportion of people having the attribute corresponding to the first population is equal to the proportion of people having the attribute corresponding to the second population.

The following hypotheses are set up:

Null Hypothesis:The proportion of people having the attribute corresponding to the first population is equal to the proportion of people having the attribute corresponding to the second population.

H0:p1=p2

Alternative Hypothesis:The proportion of people having the attribute corresponding to the first population is not equal to the proportion of people having the attribute corresponding to the second population.

H1:p1p2

The test is two-tailed.

03

Find the important values

Here, n1is the sample size for the first sample and n2is the sample size for the second sample.

Thus, n1is equal to 20 and n2is equal to 2000.

Let p^1denote the sampleproportion of people having the attribute in the first sample.

p^1=1020=0.5

Let p^2denote the sampleproportionof people having the attribute in the second sample.

p^2=14042000=0.702

The value of the pooled proportion is calculated as follows:

p¯=x1+x2n1+n2=10+140420+2000=0.7

q¯=1-p¯=1-0.7=0.3

04

Find the test statistic

The value of the test statistic is computed as shown below:

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.5-0.702-00.7×0.320+0.7×0.32000=-1.962

Thus, the value of the test statistic is -1.962.

Referring to the standard normal distribution table, the critical values of z corresponding to α=0.05for a two-tailed test are -1.96 and 1.96.

Referring to the standard normal distribution table, the corresponding p-value is equal to 0.0498.

Since the p-value is less than 0.05, the null hypothesis is rejected.

There is enough evidence to reject the claim that the two population proportions are equal.

05

Find the confidence interval

The general formula for confidence interval estimate of the difference in the two proportions is written below:

ConfidenceInterval=p^1-p^2-E,p^1-p^2+E...1

The margin of error (E) has the following expression:

E=zα2×p^1×q^1n1+p^2×q^2n2

For computing the confidence interval, first find the critical value zα2.

The confidence level is 95%; thus, the value of the level of significance for the confidence interval becomes α=0.05.

Hence,

α2=0.052=0.025

The value of zα2from the standard normal table is equal to 1.96.

Now, the margin of error (E) is equal to:

E=zα2×p^1×q^1n1+p^2×q^2n2=1.96×0.5×0.520+0.704×0.2982000=0.2200

Substitute the value of E in equation (1) as follows:

ConfidenceInterval=p^1-p^2-E,p^1-p^2+E=0.5-0.702-0.2200,0.5-0.702+0.2200=-0.4220,0.0180

Thus, the 95% confidence interval for the difference between the two proportions is.

The above interval contains the value 0. This implies that the difference in the two proportions can be equal to 0. In other words, the two population proportions have a possibility to be equal.

Thus, there is not enough evidence to reject the claim that the two population proportions are equal.

06

Comparison

It can be observed that the conclusion using the p-value method is different from the conclusion obtained using the confidence interval method.

Thus, it can be said that the hypothesis test method and the confidence interval method are not always equivalent when testing the difference between the two population proportions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determining Sample Size The sample size needed to estimate the difference between two population proportions to within a margin of error E with a confidence level of 1 - a can be found by using the following expression:

\({\bf{E = }}{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}}\sqrt {\frac{{{{\bf{p}}_{\bf{1}}}{{\bf{q}}_{\bf{1}}}}}{{{{\bf{n}}_{\bf{1}}}}}{\bf{ + }}\frac{{{{\bf{p}}_{\bf{2}}}{{\bf{q}}_{\bf{2}}}}}{{{{\bf{n}}_{\bf{2}}}}}} \)

Replace \({{\bf{n}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{n}}_{\bf{2}}}\) by n in the preceding formula (assuming that both samples have the same size) and replace each of \({{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{q}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}\;{\bf{and}}\;{{\bf{q}}_{\bf{2}}}\)by 0.5 (because their values are not known). Solving for n results in this expression:

\({\bf{n = }}\frac{{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}^{\bf{2}}}}{{{\bf{2}}{{\bf{E}}^{\bf{2}}}}}\)

Use this expression to find the size of each sample if you want to estimate the difference between the proportions of men and women who own smartphones. Assume that you want 95% confidence that your error is no more than 0.03.

Hypothesis and conclusions refer to the hypothesis test described in exercise 1.

a. Identify the null hypothesis and alternative hypothesis

b. If the p-value for test is reported as “less than 0.001,” what should we conclude about the original claim?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1.)

Coke and Pepsi Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes of the contents of cans of regular Coke (n = 36, x = 12.19 oz, s = 0.11 oz) and volumes of the contents of cans of regular Pepsi (n = 36, x = 12.29 oz, s = 0.09 oz).

a. Use a 0.05 significance level to test the claim that cans of regular Coke and regular Pepsi have the same mean volume.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. What do you conclude? Does there appear to be a difference? Is there practical significance?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Ground vs. Helicopter for Serious Injuries A study investigated rates of fatalities among patients with serious traumatic injuries. Among 61,909 patients transported by helicopter, 7813 died. Among 161,566 patients transported by ground services, 17,775 died (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15). Use a 0.01 significance level to test the claim that the rate of fatalities is higher for patients transported by helicopter.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Considering the test results and the actual sample rates, is one mode of transportation better than the other? Are there other important factors to consider?

Using Confidence Intervals

a. Assume that we want to use a 0.05 significance level to test the claim that p1 < p2. Which is better: A hypothesis test or a confidence interval?

b. In general, when dealing with inferences for two population proportions, which two of the following are equivalent: confidence interval method; P-value method; critical value method?

c. If we want to use a 0.05 significance level to test the claim that p1 < p2, what confidence level should we use?

d. If we test the claim in part (c) using the sample data in Exercise 1, we get this confidence interval: -0.000508 < p1 - p2 < - 0.000309. What does this confidence interval suggest about the claim?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free