Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Lefties In a random sample of males, it was found that 23 write with their left hands and 217 do not. In a random sample of females, it was found that 65 write with their left hands and 455 do not (based on data from “The Left-Handed: Their Sinister History,” by ElaineFowler Costas, Education Resources Information Center, Paper 399519). We want to use a 0.01significance level to test the claim that the rate of left-handedness among males is less than that among females.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the rate of left-handedness among males less than the rate of left-handedness among females?

Short Answer

Expert verified

a.There is insufficient evidence to support the claimthattherate of left-handedness among males is less than that among females.

b.The 98% confidence interval is equal to (-0.0849, 0.0265), and it suggests that there is not sufficient evidence to support the claimthattherate of left-handedness among males is less than that among females.

c.Based on the results, the rate of left-handedness among males is not significantly less than the rate of left-handedness among females.

Step by step solution

01

Given information

In a sample of males, 23 write with their left hand, and 217 do not. In another sample of females, 65 write with their left hand, and 455 do not.

It is claimed that the proportion of left-handed males is less than the proportion of right-handed females.

02

Describe the hypotheses

Null hypothesis:The rate of left-handedness among males is the same as that among females.

\({H_0}:{p_1} = {p_2}\)

Alternate hypothesis: The rate of left-handedness among males is less than that among females.

\({\rm{ }}{H_1}:{p_1} < {p_2}\)

03

Calculate the sample statistics

The sample size\(\left( {{n_1}} \right)\)is computed below:

\(\begin{array}{c}{n_1} = 23 + 217\\ = 240\end{array}\)

The sample size\(\left( {{n_2}} \right)\)is computed below:

\(\begin{array}{c}{n_2} = 65 + 455\\ = 520\end{array}\)

Assume that,\({x_1}\)and\({x_2}\)are the number of males and females who write with their left hands respectively.

Let \({\hat p_1}\)be the estimated proportion of left-handed males:

Thus,

\(\begin{array}{c}{{\hat p}_1} = \frac{{{x_1}}}{{{n_1}}}{\rm{ }}\\ = \frac{{23}}{{240}}\\ = 0.0958\end{array}\)

\(\begin{array}{c}{{\hat q}_1} = 1 - {{\hat p}_1}\\ = 0.9042\end{array}\)

Let \({\hat p_2}\)be the estimated proportion of left-handed females:

Thus,

\(\begin{array}{c}{{\hat p}_2} = \frac{{{x_2}}}{{{n_2}}}{\rm{ }}\\ = \frac{{65}}{{520}}\\ = 0.125\end{array}\)

\(\begin{array}{c}{{\hat q}_2} = 1 - {{\hat p}_2}\\ = 0.875\end{array}\)

The value of the pooled sample proportion is equal to:

\(\begin{array}{c}\bar p = \frac{{{x_1} + {x_2}}}{{{n_1} + {n_2}}}\\ = \frac{{23 + 65}}{{240 + 520}}\\ = 0.1158\end{array}\)

Hence,

\(\begin{array}{c}\bar q = 1 - \bar p\\ = 1 - 0.1158\\ = 0.8842\end{array}\)

04

Compute the value of the test statistic

The test statistic is equal to:

\(\begin{array}{c}z = \frac{{\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - \left( {{p_1} - {p_2}} \right)}}{{\sqrt {\frac{{\bar p\bar q}}{{{n_1}}} + \frac{{\bar p\bar q}}{{{n_2}}}} }}\\ = \frac{{\left( {0.0958 - 0.125} \right) - 0}}{{\sqrt {\frac{{\left( {0.1158} \right)\left( {0.8842} \right)}}{{240}} + \frac{{\left( {0.1158} \right)\left( {0.8842} \right)}}{{520}}} }}\\ = - 1.168\end{array}\)

Referring to the standard normal distribution table, the critical value of z corresponding to\(\alpha = 0.01\)for a left-tailed test is equal to -2.33.

The p-value for the z-score equal to -1.168 is equal to 0.01214.

05

Conclusion of the test

a.

Since the test statistic value is greater than the critical value and the p-value is greater than 0.01, the null hypothesis is failed to reject.

There is insufficient evidence to support the claimthat the rate of left-handedness among males is less than that among females.

06

Describe the confidence interval

If the level of significance for a one-tailed test is equal to 0.01, then the corresponding confidence level to construct the confidence interval is equal to 98%.

The expression of the confidence interval is written below:

\(\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\)

07

Calculate the margin of error

The value of\({z_{\frac{\alpha }{2}}}\)when\(\alpha = 0.02\)is equal to 2.33.

E is the margin of error and has the following formula:

\(\begin{array}{c}E = {z_{\frac{\alpha }{2}}}\sqrt {\frac{{{{\hat p}_1}{{\hat q}_1}}}{{{n_1}}} + \frac{{{{\hat p}_2}{{\hat q}_2}}}{{{n_2}}}} \\ = 2.33 \times \sqrt {\frac{{\left( {0.0958} \right)\left( {0.9042} \right)}}{{240}} + \frac{{\left( {0.125} \right)\left( {0.875} \right)}}{{520}}} \\ = 0.0557\end{array}\)

08

Construct the confidence interval

b.

Substituting the required values, the following confidence interval is obtained:

\(\begin{array}{c}\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\\(0.0958 - 0.125) - 0.0557 < {p_1} - {p_2} < (0.0958 - 0.125) + 0.0557\\ - 0.0849 < {p_1} - {p_2} < 0.0265\end{array}\)

Thus, the 98% confidence interval is equal to (-0.0848, 0.0264).

This confidence interval contains zero. This means there is a possibility that the two proportions will be equal.

Therefore, there is insufficient evidence to support the claimthat the rate of left-handedness among males is less than that among females.

09

Compare the proportions

c.

The sample proportion of left-handed males is equal to 9.58%.

The sample proportion of left-handed females is equal to 12.5%.

Thus, the proportion of left-handed males does not appear to be significantly less than the proportion of left-handed females.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Bad Stuff in Children’s Movies Data Set 11 “Alcohol and Tobacco in Movies” in Appendix B includes lengths of times (seconds) of tobacco use shown in animated children’s movies. For the Disney movies, n = 33,\(\bar x\)= 61.6 sec, s = 118.8 sec. For the other movies, n = 17,\(\bar x\)= 49.3 sec, s = 69.3 sec. The sorted times for the non-Disney movies are listed below.

a. Use a 0.05 significance level to test the claim that Disney animated children’s movies and other animated children’s movies have the same mean time showing tobacco use.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Conduct a quick visual inspection of the listed times for the non-Disney movies and comment on the normality requirement. How does the normality of the 17 non-Disney times affect the results?

0 0 0 0 0 0 1 5 6 17 24 55 91 117 155 162 205

Before/After Treatment Results Captopril is a drug designed to lower systolic blood pressure. When subjects were treated with this drug, their systolic blood pressure readings (in mm Hg) were measured before and after the drug was taken. Results are given in the accompanying table (based on data from “Essential Hypertension: Effect of an Oral Inhibitor of Angiotensin-Converting Enzyme,” by MacGregor et al., British Medical Journal, Vol. 2). Using a 0.01 significance level, is there sufficient evidence to support the claim that captopril is effective in lowering systolic blood pressure?

Subject

A

B

C

D

E

F

G

H

I

J

K

L

Before

200

174

198

170

179

182

193

209

185

155

169

210

After

191

170

177

167

159

151

176

183

159

145

146

177

Confidence Interval for Haemoglobin

Large samples of women and men are obtained, and the haemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: -1.76g/dL<μ1-μ2<-1.62g/dL.

a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?

b. Write a brief statement that interprets that confidence interval.

c. Express the confidence interval with measures from men being population 1 and measures from women being population 2.

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of p1=p2(with a 0.05 significance level) and a 95% confidence interval estimate ofp1-p2.

Braking Reaction Times: Normal? The accompanying normal quantile plot is obtained by using the braking reaction times of females listed in Exercise 6. Interpret this graph.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free