Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Does Aspirin Prevent Heart Disease? In a trial designed to test the effectiveness of aspirin in preventing heart disease, 11,037 male physicians were treated with aspirin and 11,034 male physicians were given placebos. Among the subjects in the aspirin treatment group, 139 experienced myocardial infarctions (heart attacks). Among the subjects given placebos, 239 experienced myocardial infarctions (based on data from “Final Report on the Aspirin Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine, Vol. 321: 129–135). Use a 0.05 significance level to test the claim that aspirin has no effect on myocardial infarctions.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does aspirin appear to be effective?

Short Answer

Expert verified

a. Using the hypothesis test, it is concluded thatthere is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

b.Thus, the 95% confidence interval is equal to (-0.12, -0.006). As 0 does not lie within the interval, there is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

c. It can be said that aspirin is effective in reducing the risk of myocardial infarction.

Step by step solution

01

Given information

A sample of 11,037 male physicians was treated with aspirin. Among them, 139 experienced myocardial infarctions. Another sample of 11,034 male physicians was given placebos. Among them, 239 experienced myocardial infarctions.

02

Describe the hypotheses

It is claimed that aspirin has no effect on myocardial infarctions.

Null hypothesis: Theproportion of physicians who experienced myocardial infarctions after taking aspirin is equal to the proportion of physicians who experienced myocardial infarctions after taking the placebo.

H0:p1=p2

Alternative hypothesis: Theproportion of physicians who experienced myocardial infarctions after taking aspirin is not equal to the proportion of physicians who experienced myocardial infarctions after taking the placebo.

H1:p1p2

The test is two-tailed.

03

Important values

Let p^1denote the sampleproportionof physicians who experienced myocardial infarctions after taking aspirin.

p^1=13911037=0.0126

Let p^2denote the sample proportion of physicians who experienced myocardial infarctions after taking the placebo.

p^2=23911034=0.0217

The sample size of physicians who weretreated with aspirinn1 is equal to 11037.

The sample size of physicians who weretreated with a placebon2 is equal to 11034.

The value of the pooled sample proportion is computed as follows.

p¯=x1+x2n1+n2=139+23911037+11034=0.0171

.q¯=1-p¯=1-0.0171=0.9829

04

Find the test statistic

The test statistic is computed as follows.

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.0126-0.0217-00.0171×0.982911037+0.0171×0.982911034=-5.1907

The value of the test statistic is -5.1907.

Referring to the standard normal distribution table, the critical value of z corresponding to α=0.05for a two-tailed test is equal to 1.96.

Referring to the standard normal distribution table, the corresponding p-value for z equal to -5.1907 is equal to 0.000.

As the p-value is less than 0.05, the null hypothesis is rejected.

05

Conclusion of the test

a.

There is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

06

Find the confidence interval

b.

The general formula for the confidence interval of the difference of proportions is written below.

ConfidenceInterval=p^1-p^2-E,p^1-p^2+E...1

Here, E is the margin of error and has the following formula:

E=zα2×p^1×q^1n1+p^2×q^2n2

For computing the confidence interval, first, find the critical valuezα2.

Here, α=0.05.

Hence,

α2=0.052=0.025

The value of zα2from the standard normal table is equal to 1.96.

Now, the margin of error (E) is equal to

E=zα2×p^1×q^1n1+p^2×q^2n2=1.96×0.0126×0.987411037+0.0217×0.978311034=0.00342

.

Substitute the value of E in equation (1), as follows.

.ConfidenceInterval=p^1-p^2-E,p^1-p^2+E=0.0126-0.0217-0.00342,0.0126-0.0217+0.00342=-0.012,-0.006

Thus, the 95% confidence interval is equal to (-0.12, -0.006).

07

Conclusion based on the confidence interval

The interval does not contain the value of 0 and contains all negative values.

This implies that the values of the two proportions cannot be equal.

There is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

08

Effectiveness of aspirin

c.

As the confidence interval consists of negative values, the proportion of physicians who experienced myocardial infarctions after taking aspirin is less as compared to the physicians who took the placebo.

Therefore, it can be concluded that aspirin is effective in reducing the case of myocardial infarction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Before/After Treatment Results Captopril is a drug designed to lower systolic blood pressure. When subjects were treated with this drug, their systolic blood pressure readings (in mm Hg) were measured before and after the drug was taken. Results are given in the accompanying table (based on data from “Essential Hypertension: Effect of an Oral Inhibitor of Angiotensin-Converting Enzyme,” by MacGregor et al., British Medical Journal, Vol. 2). Using a 0.01 significance level, is there sufficient evidence to support the claim that captopril is effective in lowering systolic blood pressure?

Subject

A

B

C

D

E

F

G

H

I

J

K

L

Before

200

174

198

170

179

182

193

209

185

155

169

210

After

191

170

177

167

159

151

176

183

159

145

146

177

Notation for the sample data given in exercise 1, consider the salk vaccine treatment group to be the first sample. Identify the values of \({{\bf{n}}_{\bf{1}}}{\bf{,}}{{\bf{\hat p}}_{\bf{1}}}{\bf{,}}{{\bf{\hat q}}_{\bf{1}}}{\bf{,}}{{\bf{n}}_{\bf{2}}}{\bf{,}}{{\bf{\hat p}}_{\bf{2}}}{\bf{,}}{{\bf{\hat q}}_{\bf{2}}}{\bf{,\bar p}}\) and \({\bf{\bar q}}\). Round all values so that they have six significant digits.

Critical Thinking: Did the NFL Rule Change Have the Desired Effect? Among 460 overtime National Football League (NFL) games between 1974 and 2011, 252 of the teams that won the overtime coin toss went on to win the game. During those years, a team could win the coin toss and march down the field to win the game with a field goal, and the other team would never get possession of the ball. That just didn’t seem fair. Starting in 2012, the overtime rules were changed. In the first three years with the new overtime rules, 47 games were decided in overtime and the team that won the coin toss won 24 of those games. Analyzing the Results

First explore the two proportions of overtime wins. Does there appear to be a difference? If so, how?

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of \({p_1} = {p_2}\) (with a 0.05 significance level) and a 95% confidence interval estimate of \({p_1} - {p_2}\).

Find and interpret 95 % confidence interval for the proportion of all US adults who never clothes-shop online.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free