Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Does Aspirin Prevent Heart Disease? In a trial designed to test the effectiveness of aspirin in preventing heart disease, 11,037 male physicians were treated with aspirin and 11,034 male physicians were given placebos. Among the subjects in the aspirin treatment group, 139 experienced myocardial infarctions (heart attacks). Among the subjects given placebos, 239 experienced myocardial infarctions (based on data from “Final Report on the Aspirin Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine, Vol. 321: 129–135). Use a 0.05 significance level to test the claim that aspirin has no effect on myocardial infarctions.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does aspirin appear to be effective?

Short Answer

Expert verified

a. Using the hypothesis test, it is concluded thatthere is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

b.Thus, the 95% confidence interval is equal to (-0.12, -0.006). As 0 does not lie within the interval, there is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

c. It can be said that aspirin is effective in reducing the risk of myocardial infarction.

Step by step solution

01

Given information

A sample of 11,037 male physicians was treated with aspirin. Among them, 139 experienced myocardial infarctions. Another sample of 11,034 male physicians was given placebos. Among them, 239 experienced myocardial infarctions.

02

Describe the hypotheses

It is claimed that aspirin has no effect on myocardial infarctions.

Null hypothesis: Theproportion of physicians who experienced myocardial infarctions after taking aspirin is equal to the proportion of physicians who experienced myocardial infarctions after taking the placebo.

H0:p1=p2

Alternative hypothesis: Theproportion of physicians who experienced myocardial infarctions after taking aspirin is not equal to the proportion of physicians who experienced myocardial infarctions after taking the placebo.

H1:p1p2

The test is two-tailed.

03

Important values

Let p^1denote the sampleproportionof physicians who experienced myocardial infarctions after taking aspirin.

p^1=13911037=0.0126

Let p^2denote the sample proportion of physicians who experienced myocardial infarctions after taking the placebo.

p^2=23911034=0.0217

The sample size of physicians who weretreated with aspirinn1 is equal to 11037.

The sample size of physicians who weretreated with a placebon2 is equal to 11034.

The value of the pooled sample proportion is computed as follows.

p¯=x1+x2n1+n2=139+23911037+11034=0.0171

.q¯=1-p¯=1-0.0171=0.9829

04

Find the test statistic

The test statistic is computed as follows.

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.0126-0.0217-00.0171×0.982911037+0.0171×0.982911034=-5.1907

The value of the test statistic is -5.1907.

Referring to the standard normal distribution table, the critical value of z corresponding to α=0.05for a two-tailed test is equal to 1.96.

Referring to the standard normal distribution table, the corresponding p-value for z equal to -5.1907 is equal to 0.000.

As the p-value is less than 0.05, the null hypothesis is rejected.

05

Conclusion of the test

a.

There is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

06

Find the confidence interval

b.

The general formula for the confidence interval of the difference of proportions is written below.

ConfidenceInterval=p^1-p^2-E,p^1-p^2+E...1

Here, E is the margin of error and has the following formula:

E=zα2×p^1×q^1n1+p^2×q^2n2

For computing the confidence interval, first, find the critical valuezα2.

Here, α=0.05.

Hence,

α2=0.052=0.025

The value of zα2from the standard normal table is equal to 1.96.

Now, the margin of error (E) is equal to

E=zα2×p^1×q^1n1+p^2×q^2n2=1.96×0.0126×0.987411037+0.0217×0.978311034=0.00342

.

Substitute the value of E in equation (1), as follows.

.ConfidenceInterval=p^1-p^2-E,p^1-p^2+E=0.0126-0.0217-0.00342,0.0126-0.0217+0.00342=-0.012,-0.006

Thus, the 95% confidence interval is equal to (-0.12, -0.006).

07

Conclusion based on the confidence interval

The interval does not contain the value of 0 and contains all negative values.

This implies that the values of the two proportions cannot be equal.

There is sufficient evidence to reject the claim thataspirin has no effect on myocardial infarctions.

08

Effectiveness of aspirin

c.

As the confidence interval consists of negative values, the proportion of physicians who experienced myocardial infarctions after taking aspirin is less as compared to the physicians who took the placebo.

Therefore, it can be concluded that aspirin is effective in reducing the case of myocardial infarction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

Magnet Treatment of Pain People spend around $5 billion annually for the purchase of magnets used to treat a wide variety of pains. Researchers conducted a study to determine whether magnets are effective in treating back pain. Pain was measured using the visual analog scale, and the results given below are among the results obtained in the study (based on data from “Bipolar Permanent Magnets for the Treatment of Chronic Lower Back Pain: A Pilot Study,” by Collacott, Zimmerman, White, and Rindone, Journal of the American Medical Association, Vol. 283, No. 10). Higher scores correspond to greater pain levels.

a. Use a 0.05 significance level to test the claim that those treated with magnets have a greater mean reduction in pain than those given a sham treatment (similar to a placebo).

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. Does it appear that magnets are effective in treating back pain? Is it valid to argue that magnets might appear to be effective if the sample sizes are larger?

Reduction in Pain Level after Magnet Treatment: n = 20, x = 0.49, s = 0.96

Reduction in Pain Level after Sham Treatment: n = 20, x = 0.44, s = 1.4

Refer to Exercise 10.83 and find a 90 % confidence interval for the difference between the mean numbers of acute postoperative days in the hospital with the dynamic and static systems.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

Independent and Dependent Samples Which of the following involve independent samples?

a. Data Set 14 “Oscar Winner Age” in Appendix B includes pairs of ages of actresses and actors at the times that they won Oscars for Best Actress and Best Actor categories. The pair of ages of the winners is listed for each year, and each pair consists of ages matched according to the year that the Oscars were won.

b. Data Set 15 “Presidents” in Appendix B includes heights of elected presidents along with the heights of their main opponents. The pair of heights is listed for each election.

c. Data Set 26 “Cola Weights and Volumes” in Appendix B includes the volumes of the contents in 36 cans of regular Coke and the volumes of the contents in 36 cans of regular Pepsi.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free