Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Thinking: Did the NFL Rule Change Have the Desired Effect? Among 460 overtime National Football League (NFL) games between 1974 and 2011, 252 of the teams that won the overtime coin toss went on to win the game. During those years, a team could win the coin toss and march down the field to win the game with a field goal, and the other team would never get possession of the ball. That just didn’t seem fair. Starting in 2012, the overtime rules were changed. In the first three years with the new overtime rules, 47 games were decided in overtime and the team that won the coin toss won 24 of those games. Analyzing the Results

First explore the two proportions of overtime wins. Does there appear to be a difference? If so, how?

Short Answer

Expert verified

The sample proportion of overtime wins before the rules were changed is equal to 0.548.

The sample proportion of overtime wins after the rules were changed is equal to 0.511.

There appears to be a difference in the two sample proportions of overtime wins. This implies that the change in the rules reduced the number of overtime wins that were previously won unfairly.

Step by step solution

01

Given information

In the years between 1974 and 2011, out of 460 overtime games, 252 games were won by the team that won the coin toss.

In the first 3 years beginning from 2012, there were 47 overtime games, and 24 of those games were won by the team that won the coin toss.

02

Sample Proportions

The sample proportion of overtime wins before the rules were changed (between 1974 and 2011) is computed below:

\(\begin{aligned}{c}{{\hat p}_1} &= \frac{{{\rm{Number}}\;{\rm{of}}\;{\rm{overtime}}\;{\rm{wins}}}}{{{\rm{Total}}\;{\rm{number}}\;{\rm{of}}\;{\rm{overtime}}\;{\rm{games}}}}\\ &= \frac{{252}}{{460}}\\ &= 0.548\end{aligned}\)

Thus, the sample proportion of overtime wins between 1974 and 2011 is equal to 0.548.

The sample proportion of overtime wins after the rules were changed (in the first three years starting from 2012) is computed below:

\(\begin{aligned}{c}{{\hat p}_2} &= \frac{{{\rm{Number}}\;{\rm{of}}\;{\rm{overtime}}\;{\rm{wins}}}}{{{\rm{Total}}\;{\rm{number}}\;{\rm{of}}\;{\rm{overtime}}\;{\rm{games}}}}\\ &= \frac{{24}}{{47}}\\ &= 0.511\end{aligned}\)

Thus, the sample proportion of overtime wins after the rules were changed is equal to 0.511.

03

Comparison

There appears to be a difference in the two sample proportions of overtime wins.

This suggests that the change in the rules lowered the number of overtime wins that were previously won unfairly.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Does Aspirin Prevent Heart Disease? In a trial designed to test the effectiveness of aspirin in preventing heart disease, 11,037 male physicians were treated with aspirin and 11,034 male physicians were given placebos. Among the subjects in the aspirin treatment group, 139 experienced myocardial infarctions (heart attacks). Among the subjects given placebos, 239 experienced myocardial infarctions (based on data from “Final Report on the Aspirin Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine, Vol. 321: 129–135). Use a 0.05 significance level to test the claim that aspirin has no effect on myocardial infarctions.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does aspirin appear to be effective?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Is Echinacea Effective for Colds? Rhinoviruses typically cause common colds. In a test of the effectiveness of Echinacea, 40 of the 45 subjects treated with Echinacea developed rhinovirus infections. In a placebo group, 88 of the 103 subjects developed rhinovirus infections (based on data from “An Evaluation of Echinacea Angustifolia in Experimental Rhinovirus Infections,” by Turner et al., New England Journal of Medicine, Vol. 353, No. 4). We want to use a 0.05 significance level to test the claim that Echinacea has an effect on rhinovirus infections.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does Echinacea appear to have any effect on the infection rate?

Notation for the sample data given in exercise 1, consider the salk vaccine treatment group to be the first sample. Identify the values of \({{\bf{n}}_{\bf{1}}}{\bf{,}}{{\bf{\hat p}}_{\bf{1}}}{\bf{,}}{{\bf{\hat q}}_{\bf{1}}}{\bf{,}}{{\bf{n}}_{\bf{2}}}{\bf{,}}{{\bf{\hat p}}_{\bf{2}}}{\bf{,}}{{\bf{\hat q}}_{\bf{2}}}{\bf{,\bar p}}\) and \({\bf{\bar q}}\). Round all values so that they have six significant digits.

A sample size that will ensure a margin of error of at most the one specified.

In Exercises 5–20, assume that the two samples are independent random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n1−1 and n2−1).

Are male and female professors rated differently? According to Data Set 17 “Course Evaluations” Appendix B, given below are student evaluation scores of female professors and male professors. The test claims that female and male professors have the same mean evaluation ratings. Does there appear to be a difference?

Females

4.4

3.4

4.8

2.9

4.4

4.9

3.5

3.7

3.4

4.8

Males

4.0

3.6

4.1

4.1

3.5

4.6

4.0

4.3

4.5

4.3

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free