Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Is Old Faithful Not Quite So Faithful? Listed below are time intervals (min) between eruptions of the Old Faithful geyser. The “recent” times are within the past few years, and the “past” times are from 1995. Does it appear that the mean time interval has changed? Is the conclusion affected by whether the significance level is 0.05 or 0.01?

Recent

78

91

89

79

57

100

62

87

70

88

82

83

56

81

74

102

61

Past

89

88

97

98

64

85

85

96

87

95

90

95

Short Answer

Expert verified

There is sufficient evidence to support the claim that the mean time interval between eruptions has changed at a 0.05 level of significance.

There is insufficient evidence to support the claim that the mean time interval between eruptions has changed at a 0.01 level of significance.

The conclusion of the claim is affected by the change in the significance level.

Step by step solution

01

Given information

The past and recent time intervals (min) between eruptions of the Old Faithful geyser are listed in the table.

02

Formulation of the hypotheses

Null hypothesis:The past mean time interval between eruptions is equalto the recent mean time interval between eruptions.

\({H_0}\):\({\mu _1} = {\mu _2}\)

Alternative hypothesis:The past mean time interval between eruptions is not equal to the recent mean time interval between eruptions.

\({H_1}\):\({\mu _1} \ne {\mu _2}\)

03

Calculation of the sample means

The recent mean time interval between eruptions is equal to the following:

\(\begin{array}{c}{{\bar x}_1} = \frac{{\sum\limits_{i = 1}^{{n_1}} {{x_i}} }}{{{n_1}}}\\ = \frac{{78 + 91 + .... + 61}}{{17}}\\ = 78.82\end{array}\)

Therefore, the recent mean time interval between eruptions equals78.82 minutes.

The past mean time interval between eruptions equalsthe following:

\(\begin{array}{c}{{\bar x}_2} = \frac{{\sum\limits_{i = 1}^{{n_2}} {{x_i}} }}{{{n_2}}}\\ = \frac{{89 + 88 + ... + 95}}{{12}}\\ = 89.08\end{array}\)

Therefore, the past mean time interval between eruptions equals89.08 minutes.

04

Calculation of the sample standard deviations

The standard deviation of the recent time interval between eruptions is computed below:

\(\begin{array}{c}{s_1} = \sqrt {\frac{{\sum\limits_{i = 1}^{{n_1}} {{{({x_i} - {{\bar x}_1})}^2}} }}{{{n_1} - 1}}} \\ = \sqrt {\frac{{{{\left( {78 - 78.82} \right)}^2} + {{\left( {91 - 78.82} \right)}^2} + .... + {{\left( {61 - 78.82} \right)}^2}}}{{17 - 1}}} \\ = 13.97\end{array}\)

Therefore, the standard deviation of the recent time interval between eruptions equals 13.97 minutes.

The standard deviation for the past time interval between eruptions is equal to:

\(\begin{array}{c}{s_2} = \sqrt {\frac{{\sum\limits_{i = 1}^{{n_2}} {{{({x_i} - {{\bar x}_2})}^2}} }}{{{n_2} - 1}}} \\ = \sqrt {\frac{{{{\left( {89 - 89.08} \right)}^2} + {{\left( {88 - 89.08} \right)}^2} + .... + {{\left( {95 - 89.08} \right)}^2}}}{{12 - 1}}} \\ = 9.19\end{array}\)

Therefore, the standard deviation of the past time interval between eruptions is equal to 9.19 minutes.

05

Calculation of the test statistic

Under the null hypothesis,\({\mu _1} - {\mu _2} = 0\).

The test statistic is computed below:

\(\begin{array}{c}t = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }}\\ = \frac{{\left( {78.82 - 89.08} \right) - \left( 0 \right)}}{{\sqrt {\frac{{{{\left( {13.97} \right)}^2}}}{{17}} + \frac{{{{\left( {9.19} \right)}^2}}}{{12}}} }}\\ = - 2.385\end{array}\)

Thus, the value of the test statistic is -2.385.

06

Computation of critical value

Degrees of freedom: The smaller of the two values,\(\left( {{n_1} - 1} \right)\)and\(\left( {{n_2} - 1} \right)\)is considered as the degreesof freedom.

\(\begin{array}{c}\left( {{n_1} - 1} \right) = \left( {17 - 1} \right)\\ = 16\end{array}\)

\(\begin{array}{c}\left( {{n_2} - 1} \right) = \left( {12 - 1} \right)\\ = 11\end{array}\)

The value of the degrees of freedom is the minimum of (16,11) equal to 11.

Now see the t-distribution table for a two-tailed test with a 0.05 level of significance and 11 degrees of freedom.

The critical values are -2.201 and 2.201. The corresponding p-value is equal to 0.0362.

The value of the test statistic does not lie between the values -2.201 and 2.201 and the p-value is less than 0.05. Therefore, the null hypothesis is rejected at a 0.05 significance level.

07

Conclusion of the test

There is sufficient evidence to support the claim that the mean time interval between eruptions has changed at a 0.05 level of significance.

08

Changing the level of significance

Let the level of significance be equal to 0.01.

Referring to the t-distribution table, the critical values of t at\(\alpha = 0.01\) with 11 degrees of freedom for a two-tailed test are -3.1058 and 3.1058.

The p-value remains the same and is equal to 0.0362.

The test statistic value equal to -2.385 lies between the two critical values, and the p-value is greater than 0.01.

There is insufficient evidence to support the claim that the mean time interval between eruptions has changed at a 0.01 level of significance.

Thus, the conclusion of the claim changes with the change in the significance level.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of \({p_1} = {p_2}\) (with a 0.05 significance level) and a 95% confidence interval estimate of \({p_1} - {p_2}\).

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Bednets to Reduce Malaria In a randomized controlled trial in Kenya, insecticide-treated bednets were tested as a way to reduce malaria. Among 343 infants using bednets, 15 developed malaria. Among 294 infants not using bednets, 27 developed malaria (based on data from “Sustainability of Reductions in Malaria Transmission and Infant Mortality in Western Kenya with Use of Insecticide-Treated Bed nets,” by Lind blade et al., Journal of the American Medical Association, Vol. 291, No. 21). We want to use a 0.01 significance level to test the claim that the incidence of malaria is lower for infants using bed nets.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, do the bed nets appear to be effective?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim

Question:Headache Treatment In a study of treatments for very painful “cluster” headaches, 150 patients were treated with oxygen and 148 other patients were given a placebo consisting of ordinary air. Among the 150 patients in the oxygen treatment group, 116 were free from head- aches 15 minutes after treatment. Among the 148 patients given the placebo, 29 were free from headaches 15 minutes after treatment (based on data from “High-Flow Oxygen for Treatment of Cluster Headache,” by Cohen, Burns, and Goads by, Journal of the American Medical Association, Vol. 302, No. 22). We want to use a 0.01 significance level to test the claim that the oxygen treatment is effective.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the oxygen treatment effective?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Lefties In a random sample of males, it was found that 23 write with their left hands and 217 do not. In a random sample of females, it was found that 65 write with their left hands and 455 do not (based on data from “The Left-Handed: Their Sinister History,” by ElaineFowler Costas, Education Resources Information Center, Paper 399519). We want to use a 0.01significance level to test the claim that the rate of left-handedness among males is less than that among females.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the rate of left-handedness among males less than the rate of left-handedness among females?

Repeat Exercise 12 “IQ and Lead” by assuming that the two population standard deviations are equal, so \({\sigma _1} = {\sigma _2}\). Use the appropriate method from Part 2 of this section. Does pooling the standard deviations yield results showing greater significance?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free