Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Bednets to Reduce Malaria In a randomized controlled trial in Kenya, insecticide-treated bednets were tested as a way to reduce malaria. Among 343 infants using bednets, 15 developed malaria. Among 294 infants not using bednets, 27 developed malaria (based on data from “Sustainability of Reductions in Malaria Transmission and Infant Mortality in Western Kenya with Use of Insecticide-Treated Bednets,” by Lindblade et al., Journal of the American Medical Association, Vol. 291, No. 21). We want to use a 0.01 significance level to test the claim that the incidence of malaria is lower for infants using bednets.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, do the bednets appear to be effective?

Short Answer

Expert verified

a.

The hypotheses are as follows.

\(\begin{array}{l}{H_0}:{p_1} = {p_2}\\{H_1}:{p_1} < {\rm{ }}{p_2}\end{array}\)

The test statistic is -2.4390. The p-value is 0.0073.The null hypothesis is rejected. Thus, there is sufficient evidence to support the claim that the incidence of malaria is lower for infants using bednets.

b. The 99% confidence interval is\( - 0.0950 < \left( {{{\rm{p}}_1} - {{\rm{p}}_2}} \right) < - 0.0012\).Thus, there is sufficient evidence to support the claim that the incidence of malaria is lower for infants using bednets, as the null hypothesis is not included in the interval.

c. The result suggests that the bednets appear to be effective, as using bednets reduces the incidences of developing malaria significantly among infants as the interval is negative.

Step by step solution

01

Given information

The trial is conducted to reduce malaria; the infants who developed malaria in 343 infants using bednets are 15 and the infants who developed malaria in 294 infants who did not use bednets are 27.

The significance level is \(\alpha = 0.01\) .

02

State the null and alternative hypotheses

Let\({p_1},{p_2}\)be the actual proportion of incidences of malaria in infants using bednets and without using bednets, respectively.

Test the claim that theincidence of malaria is lower for infants using bednets using the following hypotheses.

\(\begin{array}{l}{H_0}:{p_1} = {p_2}\\{H_1}:{p_1} < {\rm{ }}{p_2}\end{array}\)

03

Compute the proportions

From the given information,

\(\begin{array}{l}{n_1} = 343\,\\{x_1} = 15\\{n_2} = 294\,\\{x_2} = 27\end{array}\)

The sample proportions are

\(\begin{array}{c}{{\hat p}_1} = \frac{{{x_1}}}{{{n_1}}}\\ = \frac{{15}}{{343}}\\ = 0.0437\end{array}\]

and

\(\begin{array}{c}{{\hat p}_2} = \frac{{{x_2}}}{{{n_2}}}\\ = \frac{{27}}{{294}}\\ = 0.0918\end{array}\].

04

Find the pooled sample proportions

The sample pooled proportions are calculated as

\(\begin{array}{c}\bar p = \frac{{\left( {{x_1} + {x_2}} \right)}}{{\left( {{n_1} + {n_2}} \right)}}\,\\ = \frac{{\left( {15 + 27} \right)}}{{\left( {343 + 294} \right)}}\\ = 0.0659\end{array}\]

and

\(\begin{array}{c}\bar q = 1 - \bar p\\ = 1 - 0.0659\\ = 0.9340\end{array}\).

05

Define the test statistic

To conduct a hypothesis test of two proportions, the test statistics is computed as follows.

\(z = \frac{{\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - \left( {{p_1} - {p_2}} \right)}}{{\sqrt {\left( {\frac{{\bar p\bar q}}{{{n_1}}} + \frac{{\bar p\bar q}}{{{n_2}}}} \right)} }}\,\]

Substitute the values. So,

\(\begin{array}{c}z = \frac{{\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - \left( {{p_1} - {p_2}} \right)}}{{\sqrt {\left( {\frac{{\bar p\bar q}}{{{n_1}}} + \frac{{\bar p\bar q}}{{{n_2}}}} \right)} }}\\ = \frac{{\left( {0.0437 - 0.0918} \right) - 0}}{{\sqrt {\left( {\frac{{0.0659 \times 0.9340}}{{343}} + \frac{{0.0659 \times 0.9340}}{{294}}} \right)} }}\\ = - 2.439\end{array}\].

The value of the test statistic is -2.44.

06

Find the p-value

Referring to the standard normal table for the negative z-score of 0.0073, the cumulative probability of -2.44 is obtained from the cell intersection for rows -2.4 and the column value 0.04.

For the left-tailed test, the p-value is the area to the left to the test statistic,

which is

\(P\left( {z < - 2.44} \right) = 0.0073\].

Thus, the p-value is 0.0073.

07

Conclusion from the hypothesis test

As the p-value is less than 0.01, the null hypothesis is rejected. Thus, there is sufficient evidence to support the claim that the incidences of malaria are lower in infants using bednets.

08

Describe the confidence interval

b.

The general formula for the confidence interval of the difference of proportions is as follows.

\({\rm{Confidence}}\,\,{\rm{Interval}} = \left( {\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E\,\,,\,\,\left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E} \right)\,\]\(\).

Here, E is the margin of error, which is calculated as follows.

\(E = {z_{\frac{\alpha }{2}}} \times \sqrt {\left( {\frac{{{{\hat p}_1} \times {{\hat q}_1}}}{{{n_1}}} + \frac{{{{\hat p}_2} \times {{\hat q}_2}}}{{{n_2}}}} \right)} \]

09

Find the confidence interval

For the one-tailed test at a 0.01 significance level, the associated confidence interval is 98%.

For the critical value\({z_{\frac{\alpha }{2}}}\], the cumulative area to its left is\(1 - \frac{\alpha }{2}\).

Mathematically,

\(\begin{array}{c}P\left( {Z < {z_{\frac{\alpha }{2}}}} \right) = 1 - \frac{\alpha }{2}\\P\left( {Z < {z_{\frac{{0.02}}{2}}}} \right) = 0.99\end{array}\)

Refer to the standard normal table for the critical value. The area of 0.99 corresponds to row 2.33.

The margin of error E is computed as follows.

\(\begin{array}{c}E = {z_{\frac{\alpha }{2}}} \times \sqrt {\left( {\frac{{{{\hat p}_1} \times {{\hat q}_1}}}{{{n_1}}} + \frac{{{{\hat p}_2} \times {{\hat q}_2}}}{{{n_2}}}} \right)} \\ = 2.33 \times \sqrt {\left( {\frac{{0.0437 \times 0.9563}}{{343}} + \frac{{0.0918 \times 0.9082}}{{294}}} \right)} \\ = 0.0469\end{array}\].

Substitute the value of E in the equation for the confidence interval. So,

\(\begin{array}{c}{\rm{Confidence}}\,\,{\rm{Interval}} = \left( {\left( {{{{\rm{\hat p}}}_1} - {{{\rm{\hat p}}}_2}} \right) - {\rm{E}}\,\,{\rm{,}}\,\,\left( {{{{\rm{\hat p}}}_1} - {{{\rm{\hat p}}}_2}} \right){\rm{ + E}}} \right)\\ = \left( {\left( {0.0437 - 0.0918} \right) - 0.04685\,,\,\,\left( {0.0437 - 0.0918} \right) + 0.04685} \right)\\ = \left( { - 0.0013\,\,,\, - 0.0950} \right)\end{array}\].

Thus, the 98% confidence interval for two proportions is\( - 0.0950 < \left( {{{\rm{p}}_1} - {{\rm{p}}_2}} \right) < - 0.0012\)

As 0 does not belong to the interval, the null hypothesis is rejected. Thus, there is sufficient evidence to support the claim that the incidences of malaria are lower in infants using bednets.

10

Conclude the results

c.

There is sufficient evidence to support the claim that the incidences of malaria are lower in infants using bednets.

From the results, it can be concluded that using bednets reduces the incidences of developing malaria significantly among infants as the interval is negative.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Are Seat Belts Effective? A simple random sample of front-seat occupants involved in car crashes is obtained. Among 2823 occupants not wearing seat belts, 31 were killed. Among 7765 occupants wearing seat belts, 16 were killed (based on data from “Who Wants Airbags?” by Meyer and Finney, Chance, Vol. 18, No. 2). We want to use a 0.05 significance level to test the claim that seat belts are effective in reducing fatalities.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. What does the result suggest about the effectiveness of seat belts?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Car and Taxi Ages When the author visited Dublin, Ireland (home of Guinness Brewery employee William Gosset, who first developed the t distribution), he recorded the ages of randomly selected passenger cars and randomly selected taxis. The ages can be found from the license plates. (There is no end to the fun of traveling with the author.) The ages (in years) are listed below. We might expect that taxis would be newer, so test the claim that the mean age of cars is greater than the mean age of taxis.

Car

Ages

4

0

8

11

14

3

4

4

3

5

8

3

3

7

4

6

6

1

8

2

15

11

4

1

1

8

Taxi Ages

8

8

0

3

8

4

3

3

6

11

7

7

6

9

5

10

8

4

3

4

Hypothesis Test Use a 0.05 significance level to test the claim that differences between heights of fathers and their sons have a mean of 0 in.

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)Blanking Out on Tests Many students have had the unpleasant experience of panicking on a test because the first question was exceptionally difficult. The arrangement of test items was studied for its effect on anxiety. The following scores are measures of “debilitating test anxiety,” which most of us call panic or blanking out (based on data from “Item Arrangement, Cognitive Entry Characteristics, Sex and Test Anxiety as Predictors of Achievement in Examination Performance,” by Klimko, Journal of Experimental Education, Vol. 52, No. 4.) Is there sufficient evidence to support the claim that the two populations of scores have different means? Is there sufficient evidence to support the claim that the arrangement of the test items has an effect on the score? Is the conclusion affected by whether the significance level is 0.05 or 0.01?

Questions Arranged from Easy to Difficult

24.64

39.29

16.32

32.83

28.02

33.31

20.60

21.13

26.69

28.9

26.43

24.23

7.10

32.86

21.06

28.89

28.71

31.73

30.02

21.96

25.49

38.81

27.85

30.29

30.72

Questions Arranged from Difficult to Easy

33.62

34.02

26.63

30.26

35.91

26.68

29.49

35.32

27.24

32.34

29.34

33.53

27.62

42.91

30.20

32.54

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Bad Stuff in Children’s Movies Data Set 11 “Alcohol and Tobacco in Movies” in Appendix B includes lengths of times (seconds) of tobacco use shown in animated children’s movies. For the Disney movies, n = 33,\(\bar x\)= 61.6 sec, s = 118.8 sec. For the other movies, n = 17,\(\bar x\)= 49.3 sec, s = 69.3 sec. The sorted times for the non-Disney movies are listed below.

a. Use a 0.05 significance level to test the claim that Disney animated children’s movies and other animated children’s movies have the same mean time showing tobacco use.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Conduct a quick visual inspection of the listed times for the non-Disney movies and comment on the normality requirement. How does the normality of the 17 non-Disney times affect the results?

0 0 0 0 0 0 1 5 6 17 24 55 91 117 155 162 205

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free