Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–16, test the given claim.

Old Faithful Listed below are time intervals (min) between eruptions of the Old Faithfulgeyser. The “recent” times are within the past few years, and the “past” times are from 1995.

Does it appear that the variation of the times between eruptions has changed?

Recent

78

91

89

79

57

100

62

87

70

88

82

83

56

81

74

102

61

Past

89

88

97

98

64

85

85

96

87

95

90

95

Short Answer

Expert verified

There is enough evidence to support the claim that the variation of the times between eruptions has changed

Step by step solution

01

Given information

Two samples are considered. One sample represents the recent time intervals between eruptions with a sample size equal to 17,and the other represents past time intervals between eruptions with a sample size equal to 12.

It is claimed that the variation inthe recent eruption times is not equal to the variation in the pasteruption times.

02

Hypotheses

Let\({\sigma _1}\)and\({\sigma _2}\)be the population standard deviationsof the recent eruption timesandthe past eruption timesrespectively.

Null hypothesis: The population standard deviation of the recent eruption timesis equal to the population standard deviation of the past eruption times.

Symbolically,

\({H_0}:{\sigma _1} = {\sigma _2}\)

Alternate Hypothesis: The population standard deviation of the recent eruption times is not equal to the population standard deviation of the past eruption times.

Symbolically,

\({H_1}:{\sigma _1} \ne {\sigma _2}\)

03

Sample mean, sample size, and sample standard deviations  

The sample variance has the following formula:

\({s^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{\left( {x - \bar x} \right)}^2}} \)

The sample mean recent eruption time is equal to:

\(\begin{array}{c}{{\bar x}_1} = \frac{{78 + 91 + ....... + 61}}{{17}}\\ = 78.82\end{array}\)

The sample standard deviation of the recent eruption times is computed below:

\(\begin{array}{c}{s_{recent}} = \sqrt {\frac{{\sum\limits_{i = 1}^{{n_1}} {{{({x_i} - {{\bar x}_1})}^2}} }}{{{n_1} - 1}}} \\ = \sqrt {\frac{{{{\left( {78 - 78.82} \right)}^2} + {{\left( {91 - 78.82} \right)}^2} + .... + {{\left( {61 - 78.82} \right)}^2}}}{{17 - 1}}} \\ = 13.97\end{array}\)

Therefore, the standard deviation of the recent time interval between eruptions is equal to 13.97 minutes.

The sample mean past eruption time is equal to:

\(\begin{array}{c}{{\bar x}_2} = \frac{{\sum\limits_{i = 1}^{{n_2}} {{x_i}} }}{{{n_2}}}\\ = \frac{{89 + 88 + ... + 95}}{{12}}\\ = 89.08\end{array}\)

The sample standard deviation of the past eruption times is computed below:

\(\begin{array}{c}{s_{past}} = \sqrt {\frac{{\sum\limits_{i = 1}^{{n_2}} {{{({x_i} - {{\bar x}_2})}^2}} }}{{{n_2} - 1}}} \\ = \sqrt {\frac{{{{\left( {89 - 89.08} \right)}^2} + {{\left( {88 - 89.08} \right)}^2} + .... + {{\left( {95 - 89.08} \right)}^2}}}{{12 - 1}}} \\ = 9.19\end{array}\)

Therefore, the standard deviation of the past timeinterval between eruptions is equal to 9.19 minutes.

04

Compute the test statistic

Since two independent samples involve a claim about the population standard deviation, apply an F-test.

Consider the larger sample variance to be\(s_1^2\)and the corresponding sample size to be\({n_1}\).

The following values are obtained:

\({\left( {13.97} \right)^2} = 195.1609\)

\({\left( {9.19} \right)^2} = 84.4561\)

Here,\(s_1^2\)is the sample variance corresponding to recent eruption times and has a value equal to 195.1609 minutes squared.

\(s_2^2\)is the sample variance corresponding to the past eruption times and has a value equal to 84.4561 minutes squared.

Substitute the respective values to calculate the F statistic:

\(\begin{array}{c}F = \frac{{s_1^2}}{{s_2^2}}\\ = \frac{{{{\left( {13.97} \right)}^2}}}{{{{\left( {9.19} \right)}^2}}}\\ = 2.311\end{array}\)

05

State the critical value and the p-value

The value of the numerator degrees of freedom is equal to:

\(\begin{array}{c}{n_1} - 1 = 17 - 1\\ = 16\end{array}\)

The value of the denominator degrees of freedom is equal to:

\(\begin{array}{c}{n_2} - 1 = 12 - 1\\ = 11\end{array}\)

For the F test, the critical value corresponding to the right-tail is considered.

The critical value can be obtained using the F-distribution table with numerator degrees of freedom equal to 16and denominator degrees of freedom equal to 11 for a right-tailed test.

The level of significance is equal to:

\(\begin{array}{c}\frac{\alpha }{2} = \frac{{0.05}}{2}\\ = 0.025\end{array}\)

Thus, the critical value is equal to 3.3044.

The two-tailed p-value for F equal to 2.311 is equal to 0.1631.

06

Conclusion

Since the test statistic value is less than the critical value and the p-value is greater than 0.05, the null hypothesis fails to be rejected.

Thus, there is enough evidence to supportthe claimthat the variation of the times between eruptions has changed

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Ground vs. Helicopter for Serious Injuries A study investigated rates of fatalities among patients with serious traumatic injuries. Among 61,909 patients transported by helicopter, 7813 died. Among 161,566 patients transported by ground services, 17,775 died (based on data from “Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma,” by Galvagno et al., Journal of the American Medical Association, Vol. 307, No. 15). Use a 0.01 significance level to test the claim that the rate of fatalities is higher for patients transported by helicopter.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Considering the test results and the actual sample rates, is one mode of transportation better than the other? Are there other important factors to consider?

Confidence Interval for Haemoglobin

Large samples of women and men are obtained, and the haemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: -1.76g/dL<μ1-μ2<-1.62g/dL.

a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?

b. Write a brief statement that interprets that confidence interval.

c. Express the confidence interval with measures from men being population 1 and measures from women being population 2.

Verifying requirements in the largest clinical trial ever conducted, 401,974 children were randomly assigned to two groups. The treatment group considered of 201,229 children given the sulk vaccine for polio, and 33 of those children developed polio. The other 200,745 children were given a placebo, and 115 of those children developed polio. If we want to use the methods of this section to test the claim that the rate of polio is less for children given the sulk vaccine, are the requirements for a hypothesis test satisfied? Explain.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Is Echinacea Effective for Colds? Rhinoviruses typically cause common colds. In a test of the effectiveness of Echinacea, 40 of the 45 subjects treated with Echinacea developed rhinovirus infections. In a placebo group, 88 of the 103 subjects developed rhinovirus infections (based on data from “An Evaluation of Echinacea Angustifolia in Experimental Rhinovirus Infections,” by Turner et al., New England Journal of Medicine, Vol. 353, No. 4). We want to use a 0.05 significance level to test the claim that Echinacea has an effect on rhinovirus infections.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does Echinacea appear to have any effect on the infection rate?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Is Echinacea Effective for Colds? Rhinoviruses typically cause common colds. In a test of the effectiveness of Echinacea, 40 of the 45 subjects treated with Echinacea developed rhinovirus infections. In a placebo group, 88 of the 103 subjects developed rhinovirus infections (based on data from “An Evaluation of Echinacea Angustifolia in Experimental Rhinovirus Infections,” by Turner et al., New England Journal of Medicine, Vol. 353, No. 4). We want to use a 0.05 significance level to test the claim that Echinacea has an effect on rhinovirus infections.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does Echinacea appear to have any effect on the infection rate?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free