Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cardiac Arrest at Day and Night A study investigated survival rates for in hospital patients who suffered cardiac arrest. Among 58,593 patients who had cardiac arrest during the day, 11,604 survived and were discharged. Among 28,155 patients who suffered cardiac arrest at night, 4139 survived and were discharged (based on data from “Survival from In-Hospital Cardiac Arrest During Nights and Weekends,” by Puberty et al., Journal of the American Medical Association, Vol. 299, No. 7). We want to use a 0.01 significance level to test the claim that the survival rates are the same for day and night.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that for in-hospital patients who suffer cardiac arrest, the survival rate is the same for day and night?

Short Answer

Expert verified

a. The hypotheses are as follows.

H0:p1=p2H1:p1p2

The test statistic is 18.261. The p-value is 0.0001.

The null hypothesis is rejected, and thus, there is not sufficient evidence to claim that the survival rates are the same for the day and night.

b. The 99% confidence interval is0.0441<p1-p2<0.0579. As 0 is not included in the interval, there is not sufficient evidenceto claim that the survival rates are the same for the day and night.

c. The result suggests that the patients who had a cardiac arrest at day have more survival rate than the patients who had a cardiac arrest at night.

Step by step solution

01

Given information

The two groups of patients are formed on the basis of the time of suffering cardiac arrest, which is day or night.

Among the 58593 who suffered during the day, 11604 survived and got discharged. Among the 28155 who suffered during the night, 4139 survived and got discharged.

The significance level is α=0.01to test the claim that the survival rate is the same in both situations.

02

State the null and alternative hypotheses

Let p1,p2be the population proportion of the survival rate for patients who suffered cardiac arrests during the day and night, respectively.

The following hypotheses are formulated for the claim that the survival rates are the same for the day and night:

H0:p1=p2H1:p1p2

03

Compute the sample proportions

As per information for two groups,

n1=58593x1=11604n2=28155x2=4139

The sample proportions for the two groups are as follows.

p^1=x1n1=1160458593=0.1980

p^2=x2n2=413928155=0.1470

04

Find the sample pooled proportion 

The sample pooled proportions are calculated as follows.

p¯=x1+x2n1+n2=11604+413958593+28155=0.1815

and

.q¯=1-p¯=1-0.1815=0.8185

05

Define the test statistics

To conduct a hypothesis test of two proportions, the test statistic is computed as follows.

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2

Here, p¯is the pooled sample proportion, and q¯=1-p¯.

Substitute the values. So,

.z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.1980-0.1470-00.1815×0.818558593+0.1815×0.818528155=18.261

The value of the test statistic is 18.261.

06

Find the p-value   

Referring to the standard normal table for the positive z-score of 0.9999, the cumulative probability of 18.26 is obtained from the cell intersection for rows 3.50 and above and the column value 0.00.

That is,PZ<18.26=0.9999.

For the two-tailed test, the p-value is twice the area to the right of the test statistic.

2PZ>18.261=2×1-PZ<18.261=2×1-0.9999=0.0002

Thus, the p-value is 0.0002.

As the p-value is less than the significance level of 0.01, the null hypothesis is rejected.

Hence, there is not enough evidence to support the claim that the survival rate is the same in the day and night.

07

Describe confidence interval

b.

The general formula for the confidence interval of the difference of proportions is as follows.

Confidenceinterval=p^1-p^2-E,p^1-p^2+E...1

Here, E is the margin of error, which is calculated as follows.

E=zα2×p^1×q^1n1+p^2×q^2n2

08

Find the confidence interval

The confidence interval for the two-tailed test with a level of significance of 0.01 is 99%.

The critical value zα2has the cumulative area to its left as 1-α2.

Mathematically,

PZ<zα2=1-α2PZ<z0.012=1-0.005PZ<z0.005=0.995

From the standard normal table, the area 0.995 is observed corresponding to the intersection of the row value 2.5 and column values 0.07 and 0.08, which implies that the critical value is 2.576.

The margin of error is as follows.

E=zα2×p^1×q^1n1+p^2×q^2n2=2.576×0.198×0.80258530+0.147×0.85328155=0.0069

Substitute the value of E in equation (1).

Confidenceinterval=p^1-p^2-E,p^1-p^2+E=0.198-0.147-0.0069,0.198-0.147+0.0069=0.051-0.0069,0.051+0.0069=0.0441,0.0579

Thus, the 99% confidence interval for two proportions is 0.0441<p1-p2<0.0579.

As the value 0 is not included in the 99% confidence interval, it can be inferred that the survival rates are significantly different for day and night patients.

09

Conclude the results

c.

As the confidence limits are positive, it can be inferred thatthe survival rates are high for patients who had a cardiac arrest during the day than the patients who had a cardiac arrest during the night.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Are Seat Belts Effective? A simple random sample of front-seat occupants involved in car crashes is obtained. Among 2823 occupants not wearing seat belts, 31 were killed. Among 7765 occupants wearing seat belts, 16 were killed (based on data from “Who Wants Airbags?” by Meyer and Finney, Chance, Vol. 18, No. 2). We want to use a 0.05 significance level to test the claim that seat belts are effective in reducing fatalities.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. What does the result suggest about the effectiveness of seat belts?

Denomination Effect In the article “The Denomination Effect” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36, researchers reported results from studies conducted to determine whether people have different spending characteristics when they have larger bills, such as a \(20 bill, instead of smaller bills, such as twenty \)1 bills. In one trial, 89 undergraduate business students from two different colleges were randomly assigned to two different groups. In the “dollar bill” group, 46 subjects were given dollar bills; the “quarter” group consisted of 43 subjects given quarters. All subjects from both groups were given a choice of keeping the money or buying gum or mints. The article includes the claim that “money in a large denomination is less likely to be spent relative to an equivalent amount in smaller denominations.” Test that claim using a 0.05 significance level with the following sample data from the study.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Overlap of Confidence Intervals In the article “On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals,” by Schenker and Gentleman (American Statistician, Vol. 55, No. 3), the authors consider sample data in this statement: “Independent simple random samples, each of size 200, have been drawn, and 112 people in the first sample have the attribute, whereas 88 people in the second sample have the attribute.”

a. Use the methods of this section to construct a 95% confidence interval estimate of the difference p1-p2. What does the result suggest about the equality of p1andp2?

b. Use the methods of Section 7-1 to construct individual 95% confidence interval estimates for each of the two population proportions. After comparing the overlap between the two confidence intervals, what do you conclude about the equality ofp1andp2?

c. Use a 0.05 significance level to test the claim that the two population proportions are equal. What do you conclude?

d. Based on the preceding results, what should you conclude about the equality ofp1andp2? Which of the three preceding methods is least effective in testing for the equality ofp1andp2?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cell Phones and Handedness A study was conducted to investigate the association between cell phone use and hemispheric brain dominance. Among 216 subjects who prefer to use their left ear for cell phones, 166 were right-handed. Among 452 subjects who prefer to use their right ear for cell phones, 436 were right-handed (based on data from “Hemi- spheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery, Vol. 139, No. 5). We want to use a 0.01 significance level to test the claim that the rate of right-handedness for those who prefer to use their left ear for cell phones is less than the rate of right-handedness for those who prefer to use their right ear for cell phones. (Try not to get too confused here.)

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

License Plate Laws The Chapter Problem involved passenger cars in Connecticut and passenger cars in New York, but here we consider passenger cars and commercial trucks. Among2049 Connecticut passenger cars, 239 had only rear license plates. Among 334 Connecticuttrucks, 45 had only rear license plates (based on samples collected by the author). A reasonable hypothesis is that passenger car owners violate license plate laws at a higher rate than owners of commercial trucks. Use a 0.05 significance level to test that hypothesis.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free