Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Dreaming in Black and White A study was conducted to determine the proportion of people who dream in black and white instead of color. Among 306 people over the age of 55, 68 dream in black and white, and among 298 people under the age of 25, 13 dream in black and white (based on data from “Do We Dream in Color?” by Eva Murzyn, Consciousness and Cognition, Vol. 17, No. 4). We want to use a 0.01 significance level to test the claim that the proportion of people over 55 who dream in black and white is greater than the proportion of those under 25.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. An explanation given for the results is that those over the age of 55 grew up exposed to media that was mostly displayed in black and white. Can the results from parts (a) and (b) be used to verify that explanation?

Short Answer

Expert verified

a.There is sufficient evidence to support the claimthat the proportion of people over 55 who dream in black and white is greater than the proportion of people under 25 who dream in black and white.

b.The confidence interval is equal to (0.1167, 0.2405), and it suggeststhat the proportion of people over 55 who dream in black and white is greater than the proportion of people under 25 who dream in black and white.

c.The sample results can not be used to verify the cause of the difference in the two proportions.

Step by step solution

01

Given information

For a sample of 306 people over the age of 55, 68 dream in black and white, while for another sample of 298 people under the age of 25,13 dream in black and white.

02

Describe the hypotheses to be tested

Null hypothesis:The proportion of people over 55 who dream in black and white is equal to the proportion of people under 25 who dream in black and white.

\({H_0}:{p_1} = {p_2}\)

Alternate hypothesis: The proportion of people over 55 who dream in black and white is greater than the proportion of people under 25 who dream in black and white.

\({\rm{ }}{H_1}:{p_1} > {p_2}\)

03

Calculate the sample statistics

Let\({n_1}\)denote the sample size of people over the age of 55.

\({n_1} = 306\)

Let\({n_2}\)denote the sample size of people under the age of 25.

\({n_2} = 298\)

Assume that\({x_1}\)and\({x_2}\)are the number ofpeople over 55 who dream in black and whiteand the number of peopleunder 25 who dream in black and whiterespectively.

Let \({\hat p_1}\)be the sample proportion ofpeople over 55 who dream in black and white.

\(\begin{array}{c}{{\hat p}_1} = \frac{{{x_1}}}{{{n_1}}}{\rm{ }}\\ = \frac{{68}}{{306}}\\ = 0.2222\end{array}\)

Thus,

\(\begin{array}{c}{{\hat q}_1} = 1 - {{\hat p}_1}\\ = 0.7778\end{array}\)

Let \({\hat p_2}\)be the sample proportion ofpeople under 25 who dream in black and white.\(\begin{array}{c}{\rm{ }}{{\hat p}_2} = \frac{{{x_2}}}{{{n_2}}}\\ = \frac{{13}}{{298}}\\ = 0.0436\end{array}\)

Thus,

\(\begin{array}{c}{{\hat q}_2} = 1 - {{\hat p}_2}\\ = 0.9564\end{array}\)

The value of the pooled sample proportion is equal to:

\(\begin{array}{c}\bar p = \frac{{{x_1} + {x_2}}}{{{n_1} + {n_2}}}\\ = \frac{{68 + 13}}{{306 + 298}}\\ = 0.1341\end{array}\)

Hence,

\(\begin{array}{c}\bar q = 1 - \bar p\\ = 0.8659\end{array}\)

04

Compute the value of test statistic

The test statistic is equal to:

\(\begin{array}{c}z = \frac{{\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - \left( {{p_1} - {p_2}} \right)}}{{\sqrt {\frac{{\bar p\bar q}}{{{n_1}}} + \frac{{\bar p\bar q}}{{{n_2}}}} }}\\ = \frac{{\left( {0.2222 - 0.0436} \right) - 0}}{{\sqrt {\frac{{\left( {0.1341} \right)\left( {0.8659} \right)}}{{306}} + \frac{{\left( {0.1341} \right)\left( {0.8659} \right)}}{{298}}} }}\\ = 6.440\end{array}\)

Referring to the standard normal distribution table, the critical value of z corresponding to\(\alpha = 0.01\)for a right-tailed test is equal to 2.33.

Referring to the standard normal distribution table, the corresponding p-value is equal to 0.000.

Here, the value of the test statistic is greater than the critical value, and the p-value is less than 0.01.

Therefore, the null hypothesis is rejected.

05

Conclusion of the test

a.

There is sufficient evidence to support the claimthat the proportion of people over 55 who dream in black and white is greater than the proportion of people under25 who dream in black and white.

06

Describe the confidence interval

b.

If the level of significance for a one-tailed test is equal to 0.01, then the corresponding confidence level to construct the confidence interval is equal to 98%. Thus, the level of significance\(\left( \alpha \right)\)for the confidence interval method is 0.02.

The confidence interval has the following expression:

\(\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\)

07

Calculate the margin of error

E is the margin of error and has the following formula:

\(\begin{array}{c}E = {z_{\frac{\alpha }{2}}}\sqrt {\frac{{{{\hat p}_1}{{\hat q}_1}}}{{{n_1}}} + \frac{{{{\hat p}_2}{{\hat q}_2}}}{{{n_2}}}} \\ = 2.33 \times \sqrt {\frac{{\left( {0.2222} \right)\left( {0.7778} \right)}}{{306}} + \frac{{\left( {0.0436} \right)\left( {0.9564} \right)}}{{298}}} \\ = 0.0619\end{array}\)

08

Construct the confidence interval.

b.

Substituting the required values, the following confidence interval is obtained:

\(\begin{array}{c}\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\\(0.2222 - 0.0436) - 0.0619 < {p_1} - {p_2} < (0.2222 - 0.0436) + 0.0619\\0.1167 < {p_1} - {p_2} < 0.2405\end{array}\)

Thus, the 99% confidence interval is equal to (0.1167, 0.2405).

This confidence interval does not contain zero and consists of only positive values. This implies that there is a significant difference between the two proportions of people who dream in black in white.

Therefore, there is sufficient evidence to support the claimthat the proportion of people over 55 who dream in black and white is greater than the proportion of people under 25 who dream in black and white.

09

Reason behind the difference in the proportions

c.

The sample proportion of people over 55 who dream in black and white is equal to 22.22%.

The sample proportion of people under 25 who dream in black and white is equal to 4.36%.

It is believed that most people over the age of 55 dream in black and white as they have witnessed black and white media to a great extent.

Although the sample results support the belief, the actual reason behind the results cannot be verified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equivalence of Hypothesis Test and Confidence Interval Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2000 people with 1404 of them having the same common attribute. Compare the results from a hypothesis test of p1=p2(with a 0.05 significance level) and a 95% confidence interval estimate ofp1-p2.

Degrees of FreedomIn Exercise 20 “Blanking Out on Tests,” using the “smaller of\({n_1} - 1\) and \({n_2} - 1\)” for the number of degrees of freedom results in df = 15. Find the number of degrees of freedom using Formula 9-1. In general, how are hypothesis tests and confidence intervals affected by using Formula 9-1 instead of the “smaller of \({n_1} - 1\)and \({n_2} - 1\)”?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

Seat Belts A study of seat belt use involved children who were hospitalized after motor vehicle crashes. For a group of 123 children who were wearing seat belts, the number of days in intensive care units (ICU) has a mean of 0.83 and a standard deviation of 1.77. For a group of 290 children who were not wearing seat belts, the number of days spent in ICUs has a mean of 1.39 and a standard deviation of 3.06 (based on data from “Morbidity Among Pediatric Motor Vehicle Crash Victims: The Effectiveness of Seat Belts,” by Osberg and Di Scala, American Journal of Public Health, Vol. 82, No. 3).

a. Use a 0.05 significance level to test the claim that children wearing seat belts have a lower mean length of time in an ICU than the mean for children not wearing seat belts.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. What important conclusion do the results suggest?

Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of and)

Regular Coke and Diet Coke Data Set 26 “Cola Weights and Volumes” in Appendix B includes weights (lb) of the contents of cans of Diet Coke (n= 36, x¯= 0.78479 lb, s= 0.00439 lb) and of the contents of cans of regular Coke (n= 36, x¯= 0.81682 lb, s= 0.00751 lb).

a. Use a 0.05 significance level to test the claim that the contents of cans of Diet Coke have weights with a mean that is less than the mean for regular Coke.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. Can you explain why cans of Diet Coke would weigh less than cans of regular Coke?

Interpreting Displays.

In Exercises 5 and 6, use the results from the given displays.

Testing Laboratory Gloves, The New York Times published an article about a study by Professor Denise Korniewicz, and Johns Hopkins researched subjected laboratory gloves to stress. Among 240 vinyl gloves, 63% leaked viruses; among 240 latex gloves, 7% leaked viruses. See the accompanying display of the Statdisk results. Using a 0.01 significance level, test the claim that vinyl gloves have a greater virus leak rate than latex gloves.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free