Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have specified a margin of error, a confidence level, and a likely range for the observed value of the sample proportion. For each exercise, obtain a sample size that will ensure a margin of error of at most the one specified (provided of course that the observed value of the sample proportion is further from 0.5than the educated guess).Obtain a sample size that will ensure a margin of error of at most the one specified.

marginoferror=0.04;confidencelevel=99%;likelyrange=0.7orless

Short Answer

Expert verified

A sample size that will ensure a margin of error of at most the one specified.is approximately1,037

Step by step solution

01

step1: Given information

When the margin of error is 0.04 and the confidence level is 99% , calculate the sample size.

02

calculation

When the margin of error is 0.04and the confidence level is 99%, we can calculate the sample size.

With a 99%confidence level, the required value of localid="1651496589910" zα/2from table areas under the standard normal curve is 2.575

Use localid="1651496594165" p'g=.05Because the value in the range is close to 0.5.

The sample size for this study is,

localid="1651496599039" n=0.25za_2E2=0.252.5750.042=0.25(4,144.14)=1,036.041,037

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assessing Normality Interpret the normal quantile plot of heights of fathers.

Degrees of Freedom

For Example 1 on page 431, we used df smaller of n1-1and n2-1, we got , and the corresponding critical values aret=±2.201. If we calculate df using Formula 9-1, we getdf=19.063, and the corresponding critical values are t=±2.201. How is using the critical values of more “conservative” than using the critical values of ±2.093.

Confidence Interval for Haemoglobin

Large samples of women and men are obtained, and the haemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: -1.76g/dL<μ1-μ2<-1.62g/dL.

a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?

b. Write a brief statement that interprets that confidence interval.

c. Express the confidence interval with measures from men being population 1 and measures from women being population 2.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cell Phones and Handedness A study was conducted to investigate the association between cell phone use and hemispheric brain dominance. Among 216 subjects who prefer to use their left ear for cell phones, 166 were right-handed. Among 452 subjects who prefer to use their right ear for cell phones, 436 were right-handed (based on data from “Hemi- spheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery, Vol. 139, No. 5). We want to use a 0.01 significance level to test the claim that the rate of right-handedness for those who prefer to use their left ear for cell phones is less than the rate of right-handedness for those who prefer to use their right ear for cell phones. (Try not to get too confused here.)

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cell Phones and Handedness A study was conducted to investigate the association between cell phone use and hemispheric brain dominance. Among 216 subjects who prefer to use their left ear for cell phones, 166 were right-handed. Among 452 subjects who prefer to use their right ear for cell phones, 436 were right-handed (based on data from “Hemi- spheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery, Vol. 139, No. 5). We want to use a 0.01 significance level to test the claim that the rate of right-handedness for those who prefer to use their left ear for cell phones is less than the rate of right-handedness for those who prefer to use their right ear for cell phones. (Try not to get too confused here.)

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free