Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

Short Answer

Expert verified

a.There is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

b.The 95% confidence interval is equal to (-0.0124, 0.0542), and it suggests that the claim thatmen and women have equal success in challenging calls is true.

c.Corresponding to the sample results, it appears that men and women have equal success in challenging calls.

Step by step solution

01

Given information

Out of 2441 calls made by men, 1027 calls were overturned. Out of 1273 calls made by women, 509 calls were overturned. It is claimed that men and women have equal success in challenging calls.

02

Describe the hypotheses to be tested

Null hypothesis:Men and women have equal success in challenging calls.

\({H_0}:{p_1} = {p_2}\)

Alternate hypothesis:Men and women do not have equal success in challenging calls.

\({H_1}:{p_1} \ne {p_2}\)

03

Calculate the sample statistics

Let\({n_1}\)denote the sample size of the calls challenged by men and\({n_2}\)denote the sample size of the calls challenged by women.

Here,\({n_1} = 2441\)and\({n_2} = 1273\)

Assume that\({x_1}\)and\({x_2}\)are the number of overturned calls made by men and women respectively.

Let \({\hat p_1}\)be the sample proportion of calls that were made by men and got overturned.

\(\begin{array}{c}{{\hat p}_1} = \frac{{{x_1}}}{{{n_1}}}\\ = \frac{{1027}}{{2441}}\\ = 0.4207\end{array}\)

Thus,

\(\begin{array}{c}{{\hat q}_1} = 1 - {{\hat p}_1}\\ = 0.5793\end{array}\)

Let \({\hat p_2}\)be the sample proportion of calls that were made by women and got overturned.

\(\begin{array}{c}{{\hat p}_2} = \frac{{{x_2}}}{{{n_2}}}\\ = \frac{{509}}{{1273}}\\{{\hat p}_2} = 0.3998\end{array}\)

Thus,

\(\begin{array}{c}{{\hat q}_2} = 1 - {{\hat p}_2}\\ = 0.6002\end{array}\)

The value of the pooled sample proportion is equal to:

\(\begin{array}{c}\bar p = \frac{{{x_1} + {x_2}}}{{{n_1} + {n_2}}}\\ = \frac{{1027 + 509}}{{2441 + 1273}}\\ = 0.4136\end{array}\)


Hence,

\(\begin{array}{c}\bar q = 1 - \bar p\\ = 1 - 0.4136\\ = 0.5864\end{array}\)

04

Compute the value of test statistic

The test statistic is equal to:

\(\begin{array}{c}z = \frac{{\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - \left( {{p_1} - {p_2}} \right)}}{{\sqrt {\frac{{\bar p\bar q}}{{{n_1}}} + \frac{{\bar p\bar q}}{{{n_2}}}} }}\\ = \frac{{\left( {0.4207 - 0.3998} \right) - 0}}{{\sqrt {\frac{{\left( {0.4136} \right)\left( {0.5864} \right)}}{{2441}} + \frac{{\left( {0.4136} \right)\left( {0.5864} \right)}}{{1273}}} }}\\ = 1.227\end{array}\)

Referring to the standard normal distribution table, the critical values of z corresponding to\(\alpha = 0.05\)for a two-tailed test are equal to -1.96 and 1.96.

Referring to the standard normal distribution table, the corresponding p-value is equal to 0.02199.

Here, the value of the test statistic lies between the two critical values.

Therefore, the null hypothesis is failed to reject.

05

Conclusion

a.

There is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

06

Describe the Confidence Interval.

b.

If the level of significance for a two-tailed test is equal to 0.05, then the corresponding confidence level to construct the confidence interval is equal to 95%.

The confidence interval estimate has the following formula:

\(\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\)

Here, e is the margin of error.

07

Calculate the margin of error

The value of the margin of error is computed below:

\(\begin{array}{c}E = {z_{\frac{\alpha }{2}}}\sqrt {\frac{{{{\hat p}_1}{{\hat q}_1}}}{{{n_1}}} + \frac{{{{\hat p}_2}{{\hat q}_2}}}{{{n_2}}}} \\ = 1.96 \times \sqrt {\frac{{\left( {0.4207} \right)\left( {0.5793} \right)}}{{2441}} + \frac{{\left( {0.3998} \right)\left( {0.6002} \right)}}{{1273}}} \\ = 0.0333\end{array}\)

08

Construct the confidence interval

b.

Substituting the required values, the following confidence interval is obtained:

\(\begin{array}{c}\left( {{{\hat p}_1} - {{\hat p}_2}} \right) - E < {p_1} - {p_2} < \left( {{{\hat p}_1} - {{\hat p}_2}} \right) + E\\(0.4207 - 0.3998) - 0.0333 < {p_1} - {p_2} < (0.4207 - 0.3998) + 0.0333\\ - 0.0124 < {p_1} - {p_2} < 0.0542\end{array}\)

Thus, the 95% confidence interval is equal to (-0.0124, 0.0542).

This confidence interval contains zero that means the difference in the proportions of overturned calls can be equal to 0.

Therefore, the confidence interval suggests that there is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

09

Compare the accuracy rates.

c.

The sample success ratein challenging callsfor men is equal to 42.07% and the sample success rate in challenging calls for women is 39.98%.

Therefore,it appears that men and women have equal success in challenging calls.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sample size that will ensure a margin of error of at most the one specified.

Determining Sample Size The sample size needed to estimate the difference between two population proportions to within a margin of error E with a confidence level of 1 - a can be found by using the following expression:

\({\bf{E = }}{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}}\sqrt {\frac{{{{\bf{p}}_{\bf{1}}}{{\bf{q}}_{\bf{1}}}}}{{{{\bf{n}}_{\bf{1}}}}}{\bf{ + }}\frac{{{{\bf{p}}_{\bf{2}}}{{\bf{q}}_{\bf{2}}}}}{{{{\bf{n}}_{\bf{2}}}}}} \)

Replace \({{\bf{n}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{n}}_{\bf{2}}}\) by n in the preceding formula (assuming that both samples have the same size) and replace each of \({{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{q}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}\;{\bf{and}}\;{{\bf{q}}_{\bf{2}}}\)by 0.5 (because their values are not known). Solving for n results in this expression:

\({\bf{n = }}\frac{{{\bf{z}}_{\frac{{\bf{\alpha }}}{{\bf{2}}}}^{\bf{2}}}}{{{\bf{2}}{{\bf{E}}^{\bf{2}}}}}\)

Use this expression to find the size of each sample if you want to estimate the difference between the proportions of men and women who own smartphones. Assume that you want 95% confidence that your error is no more than 0.03.

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Overlap of Confidence Intervals In the article “On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals,” by Schenker and Gentleman (American Statistician, Vol. 55, No. 3), the authors consider sample data in this statement: “Independent simple random samples, each of size 200, have been drawn, and 112 people in the first sample have the attribute, whereas 88 people in the second sample have the attribute.”

a. Use the methods of this section to construct a 95% confidence interval estimate of the difference p1-p2. What does the result suggest about the equality of p1andp2?

b. Use the methods of Section 7-1 to construct individual 95% confidence interval estimates for each of the two population proportions. After comparing the overlap between the two confidence intervals, what do you conclude about the equality ofp1andp2?

c. Use a 0.05 significance level to test the claim that the two population proportions are equal. What do you conclude?

d. Based on the preceding results, what should you conclude about the equality ofp1andp2? Which of the three preceding methods is least effective in testing for the equality ofp1andp2?

Family Heights. In Exercises 1–5, use the following heights (in.) The data are matched so that each column consists of heights from the same family.

Father

68.0

68.0

65.5

66.0

67.5

70.0

68.0

71.0

Mother

64.0

60.0

63.0

59.0

62.0

69.0

65.5

66.0

Son

71.0

64.0

71.0

68.0

70.0

71.0

71.7

71.0

Scatterplot Construct a scatterplot of the father/son heights, then interpret it.

Eyewitness Accuracy of Police Does stress affect the recall ability of police eyewitnesses? This issue was studied in an experiment that tested eyewitness memory a week after a nonstressful interrogation of a cooperative suspect and a stressful interrogation of an uncooperative and belligerent suspect. The numbers of details recalled a week after the incident were recorded, and the summary statistics are given below (based on data from “Eyewitness Memory of Police Trainees for Realistic Role Plays,” by Yuille et al., Journal of Applied Psychology, Vol. 79, No. 6). Use a 0.01 significance level to test the claim in the article that “stress decreases the amount recalled.”

Nonstress: n = 40,\(\bar x\)= 53.3, s = 11.6

Stress: n = 40,\(\bar x\)= 45.3, s = 13.2

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free