Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Refer to Exercise 10.83 and find a 90 % confidence interval for the difference between the mean numbers of acute postoperative days in the hospital with the dynamic and static systems.

Short Answer

Expert verified

The interval is 0.00264 to 0.01299

Step by step solution

01

:Given information

With the dynamic and static systems, calculate a 90%confidence interval for the difference in the mean numbers of acute postoperative days in the hospital.

02

calculation

The degree of freedom is computed using the formula:

df=[(s12n1)+(s22n2)]2(s1n1)2n11+(s22n2)2n21=[(0.00514210)+(0.00470215)]2(0.00614210)2101+(0.00470215)215118

The interval's end point is,

x¯1x¯2±ta2s12n1+s22n2=(0.242460.01643)±2.552.0.00514210+0.00470215

=0.00264to0.01299

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

Seat Belts A study of seat belt use involved children who were hospitalized after motor vehicle crashes. For a group of 123 children who were wearing seat belts, the number of days in intensive care units (ICU) has a mean of 0.83 and a standard deviation of 1.77. For a group of 290 children who were not wearing seat belts, the number of days spent in ICUs has a mean of 1.39 and a standard deviation of 3.06 (based on data from “Morbidity Among Pediatric Motor Vehicle Crash Victims: The Effectiveness of Seat Belts,” by Osberg and Di Scala, American Journal of Public Health, Vol. 82, No. 3).

a. Use a 0.05 significance level to test the claim that children wearing seat belts have a lower mean length of time in an ICU than the mean for children not wearing seat belts.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. What important conclusion do the results suggest?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Lefties In a random sample of males, it was found that 23 write with their left hands and 217 do not. In a random sample of females, it was found that 65 write with their left hands and 455 do not (based on data from “The Left-Handed: Their Sinister History,” by ElaineFowler Costas, Education Resources Information Center, Paper 399519). We want to use a 0.01significance level to test the claim that the rate of left-handedness among males is less than that among females.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, is the rate of left-handedness among males less than the rate of left-handedness among females?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).)

Are Male Professors and Female Professors Rated Differently?

a. Use a 0.05 significance level to test the claim that two samples of course evaluation scores are from populations with the same mean. Use these summary statistics: Female professors:

n = 40, \(\bar x\)= 3.79, s = 0.51; male professors: n = 53, \(\bar x\) = 4.01, s = 0.53. (Using the raw data in Data Set 17 “Course Evaluations” will yield different results.)

b. Using the summary statistics given in part (a), construct a 95% confidence interval estimate of the difference between the mean course evaluations score for female professors and male professors.

c. Example 1 used similar sample data with samples of size 12 and 15, and Example 1 led to the conclusion that there is not sufficient evidence to warrant rejection of the null hypothesis.

Do the larger samples in this exercise affect the results much?

In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\).) Bad Stuff in Children’s Movies Data Set 11 “Alcohol and Tobacco in Movies” in Appendix B includes lengths of times (seconds) of tobacco use shown in animated children’s movies. For the Disney movies, n = 33,\(\bar x\)= 61.6 sec, s = 118.8 sec. For the other movies, n = 17,\(\bar x\)= 49.3 sec, s = 69.3 sec. The sorted times for the non-Disney movies are listed below.

a. Use a 0.05 significance level to test the claim that Disney animated children’s movies and other animated children’s movies have the same mean time showing tobacco use.

b. Construct a confidence interval appropriate for the hypothesis test in part (a).

c. Conduct a quick visual inspection of the listed times for the non-Disney movies and comment on the normality requirement. How does the normality of the 17 non-Disney times affect the results?

0 0 0 0 0 0 1 5 6 17 24 55 91 117 155 162 205

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Cell Phones and Handedness A study was conducted to investigate the association between cell phone use and hemispheric brain dominance. Among 216 subjects who prefer to use their left ear for cell phones, 166 were right-handed. Among 452 subjects who prefer to use their right ear for cell phones, 436 were right-handed (based on data from “Hemi- spheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery, Vol. 139, No. 5). We want to use a 0.01 significance level to test the claim that the rate of right-handedness for those who prefer to use their left ear for cell phones is less than the rate of right-handedness for those who prefer to use their right ear for cell phones. (Try not to get too confused here.)

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free