Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Tennis Challenges Since the Hawk-Eye instant replay system for tennis was introduced at the U.S. Open in 2006, men challenged 2441 referee calls, with the result that 1027 of the calls were overturned. Women challenged 1273 referee calls, and 509 of the calls were overturned. We want to use a 0.05 significance level to test the claim that men and women have equal success in challenging calls.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. Based on the results, does it appear that men and women have equal success in challenging calls?

Short Answer

Expert verified

a. There is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

b. The 95% confidence interval is equal to (-0.0124, 0.0542), and it suggests that the claim thatmen and women have equal success in challenging calls is true.

c. Corresponding to the sample results, it appears that men and women have equal success in challenging calls.

Step by step solution

01

Given information

Out of 2441 calls made by men, 1027 calls were overturned. Out of 1273 calls made by women, 509 calls were overturned. It is claimed that men and women have equal success in challenging calls.

02

Describe the hypotheses to be tested

Null hypothesis:Men and women have equal success in challenging calls.

H0:p1=p2

Alternate hypothesis:Men and women do not have equal success in challenging calls.

H1:p1p2

03

Calculate the sample statistics

Let n1denote the sample size of the calls challenged by men and n2denote the sample size of the calls challenged by women.

Here, n1=2441andn2=1273

Assume that x1and x2are the number of overturned calls made by men and women respectively.

Letp^1be the sample proportion of calls that were made by men and got overturned.

Thus,

p^1=x1n1=10272441=0.4207

q^1=1-p^1=0.5793

Letp^2be the sample proportion of calls that were made by women and got overturned.

p^2=x2n2=5091273p^2=0.3998

Thus,

q^2=1-p^2=0.6002

The value of the pooled sample proportion is equal to:

p¯=x1+x2n1+n2=1027+5092441+1273=0.4136


Hence,

q¯=1-p¯=1-0.4136=0.5864

04

Compute the value of test statistic

The test statistic is equal to:

z=p^1-p^2-p1-p2p¯q¯n1+p¯q¯n2=0.4207-0.3998-00.41360.58642441+0.41360.58641273=1.227

Referring to the standard normal distribution table, the critical values of z corresponding to α=0.05for a two-tailed test are equal to -1.96 and 1.96.

Referring to the standard normal distribution table, the corresponding p-value is equal to 0.02199.

Here, the value of the test statistic lies between the two critical values.

Therefore, the null hypothesis is failed to reject.

05

Conclusion

a.

There is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

06

Describe the Confidence Interval.

b.

If the level of significance for a two-tailed test is equal to 0.05, then the corresponding confidence level to construct the confidence interval is equal to 95%.

The confidence interval estimate has the following formula:

p^1-p^2-E<p1-p2<p^1-p^2+E

Here, E is the margin of error.

07

Calculate the margin of error

The value of the margin of error is computed below:

E=zα2p^1q^1n1+p^2q^2n2=1.96×0.42070.57932441+0.39980.60021273=0.0333

08

Construct the confidence interval

b.

Substituting the required values, the following confidence interval is obtained:

p^1-p^2-E<p1-p2<p^1-p^2+E(0.4207-0.3998)-0.0333<p1-p2<(0.4207-0.3998)+0.0333-0.0124<p1-p2<0.0542

Thus, the 95% confidence interval is equal to (-0.0124, 0.0542).

This confidence interval contains zero that means the difference in the proportions of overturned calls can be equal to 0.

Therefore, the confidence interval suggests that there is not sufficient evidence to reject the claim thatmen and women have equal success in challenging calls.

09

Compare the accuracy rates.

c.

The sample success ratein challenging callsfor men is equal to 42.07% and the sample success rate in challenging calls for women is 39.98%.

Therefore,it appears that men and women have equal success in challenging calls.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Braking Reaction Times: Normal? The accompanying normal quantile plot is obtained by using the braking reaction times of females listed in Exercise 6. Interpret this graph.

Find and interpret 95 % confidence interval for the proportion of all US adults who never clothes-shop online.

Before/After Treatment Results Captopril is a drug designed to lower systolic blood pressure. When subjects were treated with this drug, their systolic blood pressure readings (in mm Hg) were measured before and after the drug was taken. Results are given in the accompanying table (based on data from “Essential Hypertension: Effect of an Oral Inhibitor of Angiotensin-Converting Enzyme,” by MacGregor et al., British Medical Journal, Vol. 2). Using a 0.01 significance level, is there sufficient evidence to support the claim that captopril is effective in lowering systolic blood pressure?

Subject

A

B

C

D

E

F

G

H

I

J

K

L

Before

200

174

198

170

179

182

193

209

185

155

169

210

After

191

170

177

167

159

151

176

183

159

145

146

177

Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of\({n_1} - 1\)and\({n_2} - 1\))

Regular Coke and Diet Coke Data Set 26 “Cola Weights and Volumes” in Appendix B includesweights (lb) of the contents of cans of Diet Coke (n= 36,\(\overline x \)= 0.78479 lb, s= 0.00439 lb) and of the contents of cans of regular Coke (n= 36,\(\overline x \)= 0.81682 lb, s= 0.00751 lb).

a. Use a 0.05 significance level to test the claim that the contents of cans of Diet Coke have weights with a mean that is less than the mean for regular Coke.

b. Construct the confidence interval appropriate for the hypothesis test in part (a).

c. Can you explain why cans of Diet Coke would weigh less than cans of regular Coke?

Testing Claims About Proportions. In Exercises 7–22, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim.

Are Seat Belts Effective? A simple random sample of front-seat occupants involved in car crashes is obtained. Among 2823 occupants not wearing seat belts, 31 were killed. Among 7765 occupants wearing seat belts, 16 were killed (based on data from “Who Wants Airbags?” by Meyer and Finney, Chance, Vol. 18, No. 2). We want to use a 0.05 significance level to test the claim that seat belts are effective in reducing fatalities.

a. Test the claim using a hypothesis test.

b. Test the claim by constructing an appropriate confidence interval.

c. What does the result suggest about the effectiveness of seat belts?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free