Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

echnology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 “Airport Data Speeds” in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Short Answer

Expert verified

The hypotheses are as follows.

\(\begin{array}{l}{H_0}:\mu \ge 4\\{H_1}:\mu < 4\end{array}\)

The test statistic is 0.366, and the p-value is 0.3579.

The null hypothesis is failed to be rejected, and hence, there is insufficient evidence to support the claim that the population mean is less than 4 Mbps.

Step by step solution

01

Given information

A sample is taken from Airport Data Speeds to test the claim that the population mean is less than 4.00 Mbps.

02

State the hypotheses

The null hypothesis\({H_0}\)represents the population greater than or equal to 4. The original claim does not contain equality. So, it becomes an alternative hypothesis\({H_1}\).

Thus, the test is one-tailed.

Let\(\mu \)be the population mean of the internet speed at the airport.

The null and alternate hypotheses are as follows.

\(\begin{array}{l}{H_0}:\mu \ge 4\\{H_1}:\mu < 4\end{array}\)

03

State the test statistic and the p-value

The test statistic and the p-value are represented by the symbols\(t\)and p, respectively.

State the test statistic and p-value obtained fromthe second rowand the third row of the output, respectively, as follows.

\(\begin{array}{c}t = - 0.3662917532\\ \approx - 0.366\\p = 0.3578621222\\ \approx 0.3579\end{array}\)

04

State the decision

If the p-value is less than the significance level, the null hypothesis is rejected; otherwise, it is failed to be rejected.

Assume that the significance level is 0.05. The p-value is greater than the significance level.

Thus, the null hypothesis is failed to be rejected at a 0.05 significance level

05

Conclusion

Thus, it can be concluded that there is not sufficient evidence to support the claim that the mean data speeds for the population are lesser than 4 Mbps, at a 0.05 level of significance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Insomnia Treatment A clinical trial was conducted to test the effectiveness of the drug zopiclone for treating insomnia in older subjects. Before treatment with zopiclone, 16 subjects had a mean wake time of 102.8 min. After treatment with zopiclone, the 16 subjects had a mean wake time of 98.9 min and a standard deviation of 42.3 min (based on data from “Cognitive Behavioral Therapy vs Zopiclone for Treatment of Chronic Primary Insomnia in Older Adults,” by Sivertsenet al.,Journal of the American Medical Association, Vol. 295, No. 24). Assume that the 16 sample values appear to be from a normally distributed population, and test the claim that after treatment with zopiclone, subjects have a mean wake time of less than 102.8 min. Does zopiclone appear to be effective?

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Number and Proportion

a. Identify the actual number of respondents who answered “yes.”

b. Identify the sample proportion and the symbol used to represent it.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Earthquake Depths Data Set 21 “Earthquakes” in Appendix B lists earthquake depths, and the summary statistics are n = 600, x = 5.82 km, s = 4.93 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00 km.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Cell Phones and Cancer In a study of 420,095 Danish cell phone users, 135 subjects developed cancer of the brain or nervous system (based on data from the Journal of the National Cancer Institute as reported in USA Today). Test the claim of a somewhat common belief that such cancers are affected by cell phone use. That is, test the claim that cell phone users develop cancer of the brain or nervous system at a rate that is different from the rate of 0.0340% for people who do not use cell phones. Because this issue has such great importance, use a 0.005 significance level. Based on these results, should cell phone users be concerned about cancer of the brain or nervous system?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free