Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Type I Error and Type II Error

a. In general, what is a type I error? In general, what is a type II error?

b. For the hypothesis test in Exercise 6 “BMI for Miss America,” write a statement that would be a type I error, and write another statement that would be a type II error.

Short Answer

Expert verified

a.In general, the type I error is the probability of rejecting a null hypothesis when it is correct. Type II error is the probability offailing to reject a null hypothesis when it is wrong.

b. Type I error concludes that the BMI is less than 20.16 when actually it is equal to 20.16. Type II error concludes that the BMI is equal to 20.16 when actually it is less than 20.16.

Step by step solution

01

Describe the types of errors

a.

In testing of hypothesis, there are two types of decisions toward the null hypothesis; reject or fail to reject the null hypothesisafter inspecting sample from the whole population.

In this process, there is a risk of making the wrong decision and these wrong decisions are of two types, Type I error and Type II error.

02

Define Type I and Type II error

The error that occurs due to the rejection of a null hypothesis when it is true is called a Type I error.

Similarly, the error that occurs due to the failure to reject a null hypothesis when it is actually false is known as a Type II error.

03

Identify the Type I error and Type II error for Exercise 6

b.

Refer to Exercise 6 for the claim that the BMI for recent winners is significantly smaller than those from the 1920s and 1930s, which is 2016.

Thus, the hypotheses are as follows:

Ho:μ=20.16H1:μ<20.16

In this case, Type I error would be committed if the null hypothesis is rejected by mistake. This implies, the population mean BMI was actually 20.16, but it is concluded that the BMI is lesser than 201.6.

Similarly, suppose the mean BMI is less than 20.16, and the decision-maker decides that the mean BMI is equal to 20.16, then it will be a Type II error.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Births A random sample of 860 births in New York State included 426 boys. Use a 0.05 significance level to test the claim that 51.2% of newborn babies are boys. Do the results support the belief that 51.2% of newborn babies are boys?

Lead in Medicine Listed below are the lead concentrations (in ) measured in different Ayurveda medicines. Ayurveda is a traditional medical system commonly used in India. The lead concentrations listed here are from medicines manufactured in the United States (based on data from “Lead, Mercury, and Arsenic in US and Indian Manufactured Ayurvedic Medicines Sold via the Internet,” by Saper et al., Journal of the American Medical Association,Vol. 300, No. 8). Use a 0.05 significance level to test the claim that the mean lead concentration for all such medicines is less than 14 μg/g.

3.0 6.5 6.0 5.5 20.5 7.5 12.0 20.5 11.5 17.5

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use α= 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Self-Driving Vehicles In a TE Connectivity survey of 1000 adults, 29% said that they would feel comfortable in a self-driving vehicle. The accompanying StatCrunch display results from testing the claim that more than 1/4 of adults feel comfortable in a self-driving vehicle.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Medication Usage In a survey of 3005 adults aged 57 through 85 years, it was found that 87.1% of them used at least one prescription medication (based on data from “Use of Prescription Over-the-Counter Medications and Dietary SupplementsAmong Older Adultsin the United States,” by Qato et al., Journal of the American Medical Association,Vol. 300,No. 24). Use a 0.01 significance level to test the claim that more than 3/4 of adults use at least one prescription medication. Does the rate of prescription use among adults appear to be high?

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Course Evaluations Data Set 17 “Course Evaluations” in Appendix B includes data from student evaluations of courses. The summary statistics are n = 93, x = 3.91, s = 0.53. Use a 0.05 significance level to test the claim that the population of student course evaluations has a mean equal to 4.00.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free