Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people who require no vision correction is less than 0.25.

Short Answer

Expert verified

A type I error occurs when the actual value of the proportion is equal to 0.25, and the researcher rejects the claim p=0.25and supports the claim p<0.25.

A type II error occurs when the actual value of the proportion is less than 0.25, and the researcher fails to reject the claim p=0.25.

Step by step solution

01

Given information

It is claimed that the proportion of people who require no vision correction is less than 0.25.

02

Hypotheses

Let p be the population proportion of people who require no vision correction.

According to the stated claim, the following hypotheses are set up:

Null hypothesis H0:p=0.25.

Alternative hypothesis HA:p<0.25.

03

Types of errors

The two types of errors made while conducting hypotheses tests are defined below.

Type I error: Rejecting the null hypothesis when the null hypothesis is true is a type I error and is denoted by α.

Type II error: Failing to reject the null hypothesis when the null hypothesis is false is a type II error and is denoted by β.

In accordance with the given claim, the following statements define the type I error and the type II error:

Type I error: When the actual value of the proportion is equal to 0.25, and the researcher rejects the claim p=0.25and supports the claim p<0.25, a type I error is made.

Type II error: When the actual value of the proportion is less than 0.25, and the researcher fails to reject the claim p=0.25, a type II error is made.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).

Exercise 8 “Pulse Rates”

Final Conclusions. In Exercises 25–28, use a significance level of α = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: The standard deviation of pulse rates of adult males is more than 11 bpm. The hypothesis test results in a P-value of 0.3045.

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 “Airport Data Speeds” in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Cans of coke use the data and the claim given in exercise 1 to identify the null and alternative hypothesis and the test statistic. What is the sampling distribution of the test statistic?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value7. Old Faithful. The claim is that for the duration times (sec) of eruptions of the Old Faithful geyser, the mean is μ=240sec. The sample size is n = 6 and the test statistic is t = 1.340.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free