Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding Critical t Values When finding critical values, we often need significance levels other than those available in Table A-3. Some computer programs approximate critical t values by calculating t=df×eA2/df-1where df = n-1, e = 2.718, A=z8×df+3/8×df+1, and z is the critical z score. Use this approximation to find the critical t score for Exercise 12 “Tornadoes,” using a significance level of 0.05. Compare the results to the critical t score of 1.648 found from technology. Does this approximation appear to work reasonably well?

Short Answer

Expert verified

The value of the critical score using the approximation given in the question is equal to 1.6481.

Since the values of the critical score computed using the methods are the same, the approximation formula works well.

Step by step solution

01

Given information

A sample of 500 tornadoes is considered. It is claimed that the mean tornado length is greater than 2.5 miles.

02

Formula to compute the critical value

Since σis unknown, the test statistic used to test the given claim is the t-score which follows Student’s t distribution with n-1 degrees of freedom.

Let n be the sample size.

The formula to compute the value of the critical score is given below:

t=df×eA2/df-1

Where,

dfis the degree of freedom which is equal to

e is equal to 2.718

The formula to compute A is given below:

A=z8df+38df+1

03

Degrees of freedom

Here, n=500.

Thus, the value of the degrees of freedom is computed below:

df=n-1=500-1=499

04

Value of A

Let the level of significance be equal to α=0.05

Since the claim involves a greater than sign, the test would be right-tailed.

The value of the z-score for; α=0.05 a right-tailed test is equal to 1.645.

Thus, the value of A is computed below:

A=z8df+38df+1=1.6458499+38499+1=1.646

05

Value of the critical score

The critical score using the formula stated above is computed as follows:

t=df×eA2/df-1=df×eA2df-1=499×e1.6462499-1=1.648

Thus, the value of the critical score is equal to 1.648.

06

Comparison

The value of the critical score at α=0.05 using the formula stated in the question is equal to 1.648.

The value of the critical score at α=0.05 using the t-distribution table/technology is equal to 1.648.


Since the two critical values using the two methods are approximately equal, the given formula to approximate the critical score works considerably well.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Insomnia Treatment A clinical trial was conducted to test the effectiveness of the drug zopiclone for treating insomnia in older subjects. Before treatment with zopiclone, 16 subjects had a mean wake time of 102.8 min. After treatment with zopiclone, the 16 subjects had a mean wake time of 98.9 min and a standard deviation of 42.3 min (based on data from “Cognitive Behavioral Therapy vs Zopiclone for Treatment of Chronic Primary Insomnia in Older Adults,” by Sivertsenet al.,Journal of the American Medical Association, Vol. 295, No. 24). Assume that the 16 sample values appear to be from a normally distributed population, and test the claim that after treatment with zopiclone, subjects have a mean wake time of less than 102.8 min. Does zopiclone appear to be effective?

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 5 “Online Data”

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Null and Alternative Hypotheses Identify the null hypothesis and alternative hypothesis.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Is the Diet Practical? When 40 people used the Weight Watchers diet for one year, their mean weight loss was 3.0 lb and the standard deviation was 4.9 lb (based on data from “Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Reduction,” by Dansinger et al., Journal of the American Medical Association, Vol. 293, No. 1). Use a 0.01 significance level to test the claim that the mean weight loss is greater than 0. Based on these results, does the diet appear to have statistical significance? Does the diet appear to have practical significance?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

Airport Data Speeds: The claim that for Verizon data speeds at airports, the mean. The sample size is and the test statistic is

t =-1.625 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free