Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people with blue eyes is equal to 0.35.

Short Answer

Expert verified

A type I error occurs when the actual value of the proportion is equal to 0.35, and the researcher rejects the claim\(p = 0.35\).

A type II error occurs when the actual value of the proportion is not equal to 0.1, and the researcher fails to reject the claim \(p = 0.35\).

Step by step solution

01

Given information

The proportion of people with blue eyes is equal to 0.35.

02

Hypotheses

Let p be the population proportion of people with blue eyes.

According to the stated claim, the following hypotheses are set up:

Null hypothesis \({H_0}:p = 0.35\).

Alternative hypothesis \({H_A}:p \ne 0.35\).

03

Types of errors

The two types of errors made while conducting hypotheses tests are defined below.

Type I error: Rejecting the null hypothesis when the null hypothesis is true is a type I error and is denoted by\(\alpha \).

Type II error: Failing to reject the null hypothesis when the null hypothesis is false is a type II error and is denoted by\(\beta \).

In accordance with the given claim, the following statements define the type I error and the type II error:

Type I error: When the actual value of the proportion is equal to 0.35, and the researcher rejects the claim \(p = 0.35\), a type I error is made.

Type II error: When the actual value of the proportion is not equal to 0.35, and the researcher fails to reject the claim \(p = 0.35\), a type II error is made.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

16. Exercise 8 “Pulse Rates”

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Births A random sample of 860 births in New York State included 426 boys. Use a 0.05 significance level to test the claim that 51.2% of newborn babies are boys. Do the results support the belief that 51.2% of newborn babies are boys?

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people who write with their left hand is equal to 0.1.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Course Evaluations Data Set 17 “Course Evaluations” in Appendix B includes data from student evaluations of courses. The summary statistics are n = 93, x = 3.91, s = 0.53. Use a 0.05 significance level to test the claim that the population of student course evaluations has a mean equal to 4.00.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Speed Dating Data Set 18 “Speed Dating” in Appendix B includes “attractive” ratings of male dates made by the female dates. The summary statistics are n = 199, x = 6.19, s = 1.99. Use a 0.01 significance level to test the claim that the population mean of such ratings is less than 7.00.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free