Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Confidence Interval for Lightning Deaths Use the sample values given in Cumulative Review Exercise 1 to construct a 99% confidence interval estimate of the population mean. Assume that the population has a normal distribution. Write a brief statement that interprets the confidence interval.

Short Answer

Expert verified

The 99% confidence interval is equal to (29.2 deaths, 45.0 deaths).

There is 99% confidence that the population’s mean number of deaths due to lightning strikes will fall in the interval (29.2 deaths, 45.0 deaths).

Step by step solution

01

Given information

Data are given on the number of deaths that have occurred due to lightning strikes for a series of 14 consecutive years.

02

Confidence interval

The following formula is used to compute the confidence interval estimate of the population mean:

CI=x¯-E,x¯+E where

x¯ is the sample mean number of deaths

E is the margin of error

The formula to compute the value of E is shown below:

E=tα2sn

Here, s is the sample standard deviation, and n is the sample size.

tα2 is the value of the t-distribution at α2 level of significance with n-1 degrees of freedom.

03

Sample size, sample mean, and sample standard deviation

The sample size (n) is equal to.

The sample mean is computed below:

x¯=51+44+........+2314=37.1

The sample standard deviation is computed below:

s=i=1n(xi-x¯)2n-1=51-37.12+44-37.12+.......+23-37.1214-1=9.8

04

Value of   tα2

The confidence level is given as equal to 99%. Thus, the corresponding value of the level of significance α is equal to 0.01.

The value of the degrees of freedom is computed below:

df=n-1=14-1=13

The value of with 13 degrees of freedom is equal to 3.0123.

05

Calculation of confidence interval

The margin of error is equal to:

E=tα2sn=3.01239.814=7.8897

The 99% confidence interval estimate of the population mean is equal to

CI=x¯-E,x¯+E=37.1-7.8897,37.1+7.8897=29.2,45.0

Thus, the 99% confidence interval estimate of the population mean is equal to (29.2 deaths, 45.0 deaths).

There is 99% confidence that the population’s mean number of deaths due to lightning strikes will lie between the values 29.2 and 45.0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Earthquake Depths Data Set 21 “Earthquakes” in Appendix B lists earthquake depths, and the summary statistics are n = 600, x = 5.82 km, s = 4.93 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00 km.

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people who require no vision correction is less than 0.25.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Super Bowl Wins Through the sample of the first 49 Super Bowls, 28 of them were won by teams in the National Football Conference (NFC). Use a 0.05 significance level to test the claim that the probability of an NFC team Super Bowl win is greater than one-half.

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 “Airport Data Speeds” in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Final Conclusions. In Exercises 25–28, use a significance level of = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0 or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: Fewer than 90% of adults have a cell phone. The hypothesis test results in a P-value of 0.0003.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free