Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people who write with their left hand is equal to 0.1.

Short Answer

Expert verified

A type I error occurs when the actual value of the proportion is equal to 0.1, and the researcher rejects the claim p=0.1.

A type II error occurs when the actual value of the proportion is not equal to 0.1, and the researcher fails to reject the claim p=0.1.

Step by step solution

01

Given information

It is claimed that the proportion of people who write with their left hand is equal to 0.1.

02

Hypotheses

Let p be the population proportion of people who write with their left hand.

The hypotheses for the stated claim are as follows.

Null hypothesis H0:p=0.1

Alternative hypothesisHA:p0.1

03

Types of errors


The two types of errors made while conducting hypotheses tests are defined below.

Type I error: Rejecting the null hypothesis when the null hypothesis is true is a type I error and is denoted by α.

Type II error: Failing to reject the null hypothesis when the null hypothesis is false is a type II error and is denoted by β.

In accordance with the given claim, the following statements define the type I error and the type II error:

Type I error: When the actual value of the proportion is equal to 0.1, and the researcher rejects the claim p=0.1, a type I error is made.

Type II error: When the actual value of the proportion is not equal to 0.1, and the researcher fails to reject the claim p=0.1, a type II error is made.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 “Airport Data Speeds” in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Pulse Rates Claim: The mean pulse rate (in beats per minute, or bpm) of adult males is equal to 69 bpm. For the random sample of 153 adult males in Data Set 1 “Body Data” in Appendix B, the mean pulse rate is 69.6 bpm and the standard deviation is 11.3 bpm.

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Number and Proportion

a. Identify the actual number of respondents who answered “yes.”

b. Identify the sample proportion and the symbol used to represent it.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Earthquake Depths Data Set 21 “Earthquakes” in Appendix B lists earthquake depths, and the summary statistics are n = 600, x = 5.82 km, s = 4.93 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00 km.

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Tornadoes Data Set 22 “Tornadoes” in Appendix B includes data from 500 random tornadoes. The accompanying StatCrunch display results from using the tornado lengths (miles) to test the claim that the mean tornado length is greater than 2.5 miles.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free