Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Is Nessie Real? This question was posted on the America Online website: Do you believe the Loch Ness monster exists? Among 21,346 responses, 64% were “yes.” Use a 0.01 significance level to test the claim that most people believe that the Loch Ness monster exists. How is the conclusion affected by the fact that Internet users who saw the question could decide whether to respond?

Short Answer

Expert verified

Null hypothesis: The proportion of people who believe that the Loch Ness monster exists is equal to 50%.

Alternative hypothesis: The proportion of people who believe that the Loch Ness monster exists is greater than 50%.

Test statistic: 40.909

Critical value: 2.3263

P-value: 0.000

The null hypothesis is rejected.

There is enough evidence to support the claim that the proportion of people who believe that the Loch Ness monster exists is greater than 50%.

The sample is a voluntary-response sample and not a simple random sample. Thus, the results of the test maybe inaccurate.

Step by step solution

01

Given information

In a survey involving 21346 people, 64% believe that the Loch Ness monster exists. It is claimed that most people believe that the Loch Ness monster exists.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of people who believe that the Loch Ness monster exists is equal to 50%.

H0:p=0.5

The alternative hypothesis is written as follows.

The proportion of people who believe that the Loch Ness monster exists is greater than 50%.

H1:p>0.5

The test is right-tailed.

03

Sample size, sample proportion,and population proportion

The sample size is equal to n=21346.

The sample proportion of people who believe that the Loch Ness monster exists is equal to

p^=64%=64100=0.64

The population proportion of people who believe that the Loch Ness monster exists is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.64-0.50.51-0.521346=40.909

Thus, z=40.909.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at α=0.01 for a right-tailed test is equal to 2.3263.

Referring to the standard normal table, the p-value for the test statistic value of 40.909is equal to 0.000.

As the p-value is less than 0.01, the null hypothesis is rejected.

06

Conclusion of the test

There is enough evidence to support the claim that the proportion of people who believe that the Loch Ness monster exists is greater than 50%.

If the internet users have chosen to respond to the question, the sample is a voluntary-response sample and cannot be considered a simple random sample.

Thus, the results of the test cannot be relied upon and maybe false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Tennis Instant Replay The Hawk-Eye electronic system is used in tennis for displaying an instant replay that shows whether a ball is in bounds or out of bounds so players can challenge calls made by referees. In a recent U.S. Open, singles players made 879 challenges and 231 of them were successful, with the call overturned. Use a 0.01 significance level to test the claim that fewer than 1/ 3 of the challenges are successful. What do the results suggest about the ability of players to see calls better than referees?

In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 6 “Cell Phone”

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy When she was 9 years of age, Emily Rosa did a science fair experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left hand, and then she asked the therapists to identify the selected hand by placing their hand just under Emily’s hand without seeing it and without touching it. Among 280 trials, the touch therapists were correct 123 times (based on data in “A Close Look at Therapeutic Touch,” Journal of the American Medical Association, Vol. 279, No. 13). Use a 0.10 significance level to test the claim that touch therapists use a method equivalent to random guesses. Do the results suggest that touch therapists are effective?

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -2.50 is obtained when testing the claim that p<0.75

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Insomnia Treatment A clinical trial was conducted to test the effectiveness of the drug zopiclone for treating insomnia in older subjects. Before treatment with zopiclone, 16 subjects had a mean wake time of 102.8 min. After treatment with zopiclone, the 16 subjects had a mean wake time of 98.9 min and a standard deviation of 42.3 min (based on data from “Cognitive Behavioral Therapy vs Zopiclone for Treatment of Chronic Primary Insomnia in Older Adults,” by Sivertsenet al.,Journal of the American Medical Association, Vol. 295, No. 24). Assume that the 16 sample values appear to be from a normally distributed population, and test the claim that after treatment with zopiclone, subjects have a mean wake time of less than 102.8 min. Does zopiclone appear to be effective?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free