Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Postponing Death An interesting and popular hypothesis is that individuals can temporarily postpone death to survive a major holiday or important event such as a birthday. In a study, it was found that there were 6062 deaths in the week before Thanksgiving, and 5938 deaths the week after Thanksgiving (based on data from “Holidays, Birthdays, and Postponement of Cancer Death,” by Young and Hade, Journal of the American Medical Association, Vol. 292, No. 24). If people can postpone death until after Thanksgiving, then the proportion of deaths in the week before should be less than 0.5. Use a 0.05 significance level to test the claim that the proportion of deaths in the week before Thanksgiving is less than 0.5. Based on the result, does there appear to be any indication that people can temporarily postpone death to survive the Thanksgiving holiday?

Short Answer

Expert verified

Null hypothesis: The proportion of deaths in the week before Thanksgiving is equal to 0.5.

Alternative hypothesis: The proportion of deaths in the week before Thanksgiving is less than 0.5.

Test statistic: 1.095

Critical value: -1.645

P-value: 0.8632

The null hypothesis is rejected.

There is not enough evidence to support the claim that the proportion of deaths in the week before Thanksgiving is less than 0.5.

Asa sufficient proportion of deaths occur in the week before Thanksgiving, it appears that people can temporarily postpone death to survive the Thanksgiving holiday.

Step by step solution

01

Given information

There are 6062 deaths in the week before Thanksgiving and 5938 deaths in the week after Thanksgiving.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of deaths in the week before Thanksgiving is equal to 0.5.

H0:p=0.5

The alternative hypothesis is written as follows.

The proportion of deaths in the week before Thanksgiving is less than 0.5.

H1:p<0.5

The test is left-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is computed below.

n=6062+5938=12000

The sample proportion of deaths in the week before Thanksgiving is computed below.

p^=606212000=0.505

The population proportion of deaths in the week before Thanks giving is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.505-0.50.51-0.512000=1.095

Thus, z=1.095.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at α=0.05 for a left-tailed test is equal to -1.645.

Referring to the standard normal table, the p-value for the test statistic value of 1.095 is equal to 0.8632.

As the p-value is greater than 0.05, the null hypothesis is not rejected.

06

Conclusion of the test

There is not enough evidence to support the claim that the proportion of deaths in the week before Thanksgiving is less than 0.5.

As the proportion of deaths in the week before Thanksgiving is approximately 50.5% (greater than 50%), it appears that people can temporarily postpone death to survive the Thanksgiving holiday.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

16. Exercise 8 “Pulse Rates”

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Cans of Coke Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes (ounces) of a sample of cans of regular Coke. The summary statistics are n = 36, x = 12.19 oz, s = 0.11 oz. Use a 0.05 significance level to test the claim that cans of Coke have a mean volume of 12.00 ounces. Does it appear that consumers are being cheated?

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use α= 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Self-Driving Vehicles In a TE Connectivity survey of 1000 adults, 29% said that they would feel comfortable in a self-driving vehicle. The accompanying StatCrunch display results from testing the claim that more than 1/4 of adults feel comfortable in a self-driving vehicle.

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Requirements and Conclusions

a. Are any of the three requirements violated? Can the methods of this section be used to test the claim?

b. It was stated that we can easily remember how to interpret P-values with this: “If the P is low, the null must go.” What does this mean?

c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading?

d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Number and Proportion

a. Identify the actual number of respondents who answered “yes.”

b. Identify the sample proportion and the symbol used to represent it.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free