Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Overtime Rule in Football Before the overtime rule in the National Football League was changed in 2011, among 460 overtime games, 252 were won by the team that won the coin toss at the beginning of overtime. Using a 0.05 significance level, test the claim that the coin toss is fair in the sense that neither team has an advantage by winning it. Does the coin toss appear to be fair?

Short Answer

Expert verified

Null hypothesis: The proportion of overtime wins that are won by the team that has won the coin toss is equal to 0.5.

Alternative hypothesis: The proportion of overtime wins that are won by the team that has won the coin toss is not equal to 0.5.

Test statistic: 2.05

Critical value: 1.96

P-value: 0.0404

The null hypothesis is rejected.

There is enough evidence to reject the claim that the proportion of games that are won by the team that has won the coin toss is equal to 0.5.

The coin toss does not appear to be fair.

Step by step solution

01

Given information

Out of 460 overtime games, 252 of them are won by the team that has won the coin toss. It is claimed that the coin toss is fair, and an equal number of teams who win/do not win the coin toss go on to win the game.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of overtime wins that are won by the team that has won the coin toss is equal to 0.5.

H0:p=0.5

The alternative hypothesis is written as follows.

The proportion of overtime wins that are won by the team that has won the coin toss is not equal to 0.5.

H1:p0.5

The test is two-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is equal to n=460.

The sample proportion of overtime wins that are won by the team that has won the coin toss is computed below.

p^=252460=0.548

The population proportion of games that are won by the team that has won the coin toss is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.548-0.50.51-0.5460=2.05

Thus, z=2.05.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at for a two-tailed test is equal to 1.96.

Referring to the standard normal table, the p-value for the test statistic value of 2.05 is equal to 0.0404.

As the p-value is less than 0.05, the null hypothesis is rejected.

06

Conclusion of the test

There is enough evidence to reject the claim that the proportion of games that arewon by the team that has won the coin toss is equal to 0.5.

This concludes that the coin toss is not fair, and there is a greater chance of winning the game after winning the coin toss.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Medication Usage In a survey of 3005 adults aged 57 through 85 years, it was found that 87.1% of them used at least one prescription medication (based on data from “Use of Prescription Over-the-Counter Medications and Dietary SupplementsAmong Older Adultsin the United States,” by Qato et al., Journal of the American Medical Association,Vol. 300,No. 24). Use a 0.01 significance level to test the claim that more than 3/4 of adults use at least one prescription medication. Does the rate of prescription use among adults appear to be high?

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use = 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Biometric Security In a USA Today survey of 510 people, 53% said that we should replace passwords with biometric security, such as fingerprints. The accompanying Statdisk display results from a test of the claim that half of us say that we should replace passwords with biometric security.

Lead in Medicine Listed below are the lead concentrations (in ) measured in different Ayurveda medicines. Ayurveda is a traditional medical system commonly used in India. The lead concentrations listed here are from medicines manufactured in the United States (based on data from “Lead, Mercury, and Arsenic in US and Indian Manufactured Ayurvedic Medicines Sold via the Internet,” by Saper et al., Journal of the American Medical Association,Vol. 300, No. 8). Use a 0.05 significance level to test the claim that the mean lead concentration for all such medicines is less than 14 μg/g.

3.0 6.5 6.0 5.5 20.5 7.5 12.0 20.5 11.5 17.5

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month (based on data from “Sustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,” by Rigotti et al., Journal of the American Medical Association, Vol. 312, No. 7). Use a 0.01 significance level to test the claim that 80% of patients stop smoking when given sustained care. Does sustained care appear to be effective?

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free